X-AMR, a pop-up journal

Antimicrobial resistance (AMR) is a cross-disciplinary issue, with ground-breaking studies currently bringing together clinicians and modellers, veterinary and soil scientists, microbiologists and anthropologists. Yet finding a home for the unique publications from this research is difficult. The Microbiology Society is providing such a home with a new pop-up journal for cross-disciplinary research on antimicrobial resistance: X-AMR.
We invite submissions in the form of research papers, mini-reviews or commentaries. For more information on X-AMR, including how to submit your article, see our FAQs page.
Included in this collection are a host of antimicrobial resistance papers already published across our portfolio. The latest X-AMR articles will appear as and when they are published. Read our Guest Editors' introductory Editorial here.
Collection Contents
1 - 20 of 122 results
-
-
Expression of adhesin genes and biofilm formation among Klebsiella oxytoca clinical isolates from patients with antibiotic-associated haemorrhagic colitis
Purpose. Biofilm formation and resistance to last-line antibiotics have restricted chemotherapy options toward infection eradication.
Methodology. Fifty K. oxytoca isolates were collected from patients with antibiotic-associated haemorrhagic colitis (AAHC). Antibiotic susceptibility tests were conducted and phenotypic biofilm formation was assessed using microtitre tissue plate (MTP) assay. PCR was employed to amplify the adhesins, extended-spectrum β-lactamases (ESBLs), carbapenemase and colistin resistance genes. The expression of adhesin genes was evaluated using quantitative real-time PCR (RT-qPCR).
Results/Key findings. The previous antibiotic consumption and hospitalization (P<0.05) and older ages (P=0.0033) were significantly associated with AAHC. None of the isolates produced biofilm strongly, but 70% of them produced moderate-level biofilm. The bla CTX-M (12/14), the bla IMP (8/14 MICIMI =4 µg ml−1 ) and bla OXA-48-like (5/14) and mcr-1 (4/14) genes were predominant, three of which harbouring all the genes. The expression of matB (0.023) and mrkA (0.011) was significantly different between multidrug-resistant and susceptible isolates. Furthermore, moderately biofilm producer isolates significantly exhibited higher expression of fimA (P=.0117), pilQ (P=0.002) and mrkA (P=0.020) genes compared to biofilm non-producers. No significant difference regarding gene expression was observed among ESBL alleles.
Conclusion. Bacterial attachment by adhesins and biofilm formation among extensive drug-resistant K. oxytoca isolates hinder the efficient infection eradication. Hence, control and surveillance studies should be performed and other therapeutic auspicious approaches must be taken into account against AAHC, biofilm formation and drug resistance spread. Furthermore, previous antibiotic consumption and long-term hospitalization should be controlled.
-
-
-
In vitro activity of mecillinam and nitroxoline against Neisseria gonorrhoeae – re-purposing old antibiotics in the multi-drug resistance era
In 2018, the European Centre for Disease Prevention and Control reported the first cases of extensively drug-resistant Neisseria gonorrhoeae infections in Europe. Seeking new options for antimicrobial therapy we investigated the susceptibility of N. gonorrhoeae to nitroxoline (NIT) and mecillinam (MCM), both of which are currently only indicated to treat uncomplicated urinary tract infections. Clinical N. gonorrhoeae isolates with non-susceptibility to penicillin from two German medical centres were included (n =27). Most isolates were also non-susceptible to a range of other anti-gonococcal antimicrobials (cefotaxime, ciprofloxacin, azithromycin, tetracycline). All isolates were further characterized by multi-locus sequence typing. MICs of penicillin and cefotaxime were determined by agar gradient diffusion. Production of penicillinase was tested by cefinase disk test. Susceptibility of MCM was investigated by agar dilution, NIT by agar dilution and disk diffusion. Penicillin MICs ranged from 0.125 to 64 mg l−1 and MICs of cefotaxime ranged from < 0.016 to 1 mg l−1 . Five isolates were penicillinase-producers. MICs of MCM ranged from 16 to > 128 mg l−1 whereas MICs of NIT ranged from 0.125 to 2 mg l−1 . NIT disk diffusion (median zone diameter 32 mm) correlated well with results from agar dilution. We demonstrated excellent in vitro activity of NIT against clinical N. gonorrhoeae isolates with non-susceptibility to standard anti-gonococcal antibiotics. MCM activity was unsatisfactory. Correlation of agar dilution and disk diffusion in NIT susceptibility testing is an important aspect with potential clinical implications.
-
-
-
Multidrug- and colistin-resistant Salmonella enterica 4,[5],12:i:- sequence type 34 carrying the mcr-3.1 gene on the IncHI2 plasmid recovered from a human
A colistin-resistant Salmonella enterica 4, [5],12:i:- sequence type (ST) 34 harbouring mcr-3.1 was recovered from a patient who travelled to China 2 weeks prior to diarrhoea onset. Genomic analysis revealed the presence of the mcr-3.1 gene located in the globally disseminated IncHI2 plasmid, highlighting the intercontinental dissemination of the colistin-resistant S. enterica 4, [5],12:i:- ST34 pandemic clone.
-
-
-
Nisin penetration and efficacy against Staphylococcus aureus biofilms under continuous-flow conditions
More LessBiofilms may enhance the tolerance of bacterial pathogens to disinfectants, biocides and other stressors by restricting the penetration of antimicrobials into the matrix-enclosed cell aggregates, which contributes to the recalcitrance of biofilm-associated infections. In this work, we performed real-time monitoring of the penetration of nisin into the interior of Staphylococcus aureus biofilms under continuous flow and compared the efficacy of this lantibiotic against planktonic and sessile cells of S. aureus . Biofilms were grown in Center for Disease Control (CDC) reactors and the spatial and temporal effects of nisin action on S. aureus cells were monitored by real-time confocal microscopy. Under continuous flow, nisin caused loss of membrane integrity of sessile cells and reached the bottom of the biofilms within ~20 min of exposure. Viability analysis using propidium iodide staining indicated that nisin was bactericidal against S. aureus biofilm cells. Time-kill assays showed that S. aureus viability reduced 6.71 and 1.64 log c.f.u. ml-1 for homogenized planktonic cells in exponential and stationary phase, respectively. For the homogenized and intact S. aureus CDC biofilms, mean viability decreased 1.25 and 0.50 log c.f.u. ml-1, respectively. Our results demonstrate the kinetics of biofilm killing by nisin under continuous-flow conditions, and shows that alterations in the physiology of S. aureus cells contribute to variations in sensitivity to the lantibiotic. The approach developed here could be useful to evaluate the antibiofilm efficacy of other bacteriocins either independently or in combination with other antimicrobials.
-
-
-
Rapid antimicrobial susceptibility tests for sepsis; the road ahead
More LessCurrent methods for antimicrobial susceptibility testing (AST) are too slow to affect initial treatment decisions in the early stages of sepsis, when the prescriber is most concerned to select effective therapy immediately, rather than finding out what will not work 1 or 2 days later. There is a clear need for much faster differentiation between viral and bacterial infection, and AST, linked to earlier aetiological diagnosis, without sacrificing either the accuracy of quantitative AST or the low cost of qualitative AST. Truly rapid AST methods are eagerly awaited, and there are several candidate technologies that aim to improve the targeting of our limited stock of effective antimicrobial agents. However, none of these technologies are approaching the point of care and nor can they be described as truly culture-independent diagnostic tests. Rapid chemical and genomic methods of resistance detection are not yet reliable predictors of antimicrobial susceptibility and often rely on prior bacterial isolation. In order to resolve the trade-off between diagnostic confidence and therapeutic efficacy in increasingly antimicrobial-resistant sepsis, we propose a series of three linked decision milestones: initial clinical assessment (e.g. qSOFA score) within 10 min, initial laboratory tests and presumptive antimicrobial therapy within 1 h, and definitive AST with corresponding antimicrobial amendment within an 8 h window (i.e. the same working day). Truly rapid AST methods therefore must be integrated into the clinical laboratory workflow to ensure maximum impact on clinical outcomes of sepsis, and diagnostic and antimicrobial stewardship. The requisite series of development stages come with a substantial regulatory burden that hinders the translation of innovation into practice. The regulatory hurdles for the adoption of rapid AST technology emphasize technical accuracy, but progress will also rely on the effect rapid AST has on prescribing behaviour by physicians managing the care of patients with sepsis. Early adopters in well-equipped teaching centres in close proximity to large clinical laboratories are likely to be early beneficiaries of rapid AST, while simplified and lower-cost technology is needed to support poorly resourced hospitals in developing countries, with their higher burden of AMR. If we really want the clinical laboratory to deliver a specific, same-day diagnosis underpinned by definitive AST results, we are going to have to advocate more effectively for the clinical benefits of bacterial detection and susceptibility testing at critical decision points in the sepsis management pathway.
-
-
-
Circulation of imipenem-resistant Acinetobacter baumannii ST10, ST2 and ST3 in a university teaching hospital from Tehran, Iran
More LessPurpose. Multi-drug resistant (MDR) Acinetobacter baumannii has introduced a worldwide health crisis. The purposes of this study were to characterize the clonal relatedness among MDR clinical strains and to introduce a new two-locus typing method confirmed by multi-locus sequence typing (MLST).
Methodology. In this study, we determined antimicrobial resistance, detected genes associated with carbapenem resistance and characterized clonal relatedness among 99 clinical isolates extracted from 82 hospitalized inpatients in a university hospital.
Results. Of the 99 A. baumannii isolates, 92.9% (92/99) were resistant to imipenem and 97.9% (97/99) had an MDR profile. We found that the high prevalence of blaVIM [94.9% (94/99)] and blaOXA-23-like [93.93% (93/99)] is the main mechanism of carbapenem resistance. This study proposes a new two-locus typing (blaOXA-51-like and ampC) method for the rapid identification of clonal complexes (CCs). The results of this method and confirmation by MLST show that clinical isolates carry blaOXA-68 as well as ampC-10 or ampC-20 genes belonging to CC10 (ST10); blaOXA-66 and ampC-2 belonging to CC2 (ST2); and blaOXA-71 and ampC-3 belonging to CC3 (ST3). One isolate had blaOXA-90 with an undetermined allele number of ampC belonging to ST513.
Conclusion. The high prevalence of MDR strains and the circulation of four limited clones, including ST10 (45/99), ST2 (41/99), ST3 (12/99) and ST513 (1/99), in the clinical setting highlights the importance of a rigorous infection control programme. The two-locus typing method has more discrimination than the application of each method separately and it could be applied for the rapid determination of the CC without performing MLST.
-
-
-
Erythromycin-resistant Streptococcus pneumoniae: phenotypes, genotypes, transposons and pneumococcal vaccine coverage rates
Purpose. To assess the antibiotic resistance, transposon profiles, serotype distribution and vaccine coverage rates in 110 erythromycin-resistant S. pneumoniae clinical isolates.
Methodology. Erythromycin, clindamycin, tetracycline, chloramphenicol and kanamycin susceptibilities were assessed using the E-test/disc diffusion method. Inducible macrolide resistance was tested using the erythromycin-clindamycin double disc diffusion test. Serogrouping and serotyping were performed using latex particle agglutination and the Quellung reaction, respectively. Drug resistance genes and transposon-specific genes were investigated by PCR.
Results. Of the isolates, 93 % were resistant to clindamycin; 81 % were resistant to tetracycline; 76 % were multi-drug-resistant, having resistance to both clindamycin and tetracycline; and 12 % had extended-drug resistance, being resistant to clindamycin, tetracycline, chloramphenicol and kanamycin. The majority of isolates (88.2 %) exhibited the cMLSB phenotype. The association between the cMLSB phenotype and tetracycline resistance was related to transposons Tn2010 (38.2 %), Tn6002 (21.8 %) and Tn3872 (18.2 %). M and iMLSB phenotypes were observed in 7 and 5 % of the isolates, respectively. The most frequent serotype was 19 F (40 %). Among the erythromycin-resistant pneumococci, vaccine coverage rates for the 13-valent pneumococcal conjugate vaccine (PCV-13) and the 23-valent pneumococcal polysaccharide vaccine (PPSV-23) were 76.4 and 79.1 %, respectively, compared to 82.2 and 85.1 % transposon-carrying isolates.
Conclusions. Multi-drug resistance among erythromycin-resistant S. pneumoniae isolates mainly occurs due to the horizontal spread of the Tn916 family of transposons. The majority of the transposon-carrying isolates are covered by 13- and 23-valent pneumococcal vaccines. Since serotype distribution and transposons in S. pneumoniae isolates may change over time, close monitoring is essential.
-
-
-
Evaluation of risk factors for colistin resistance among uropathogenic isolates of Escherichia coli and Klebsiella pneumoniae: a case–control study
Introduction. The last few years have seen the emergence of multi-drug resistant (MDR) Gram-negative infections, which are associated with high morbidity and mortality. The indiscriminate use of colistin has led to the development of resistance, which can be diagnosed effectively by broth microdilution. Studies from India are limited, and this study was conducted in order to determine the prevalence and risk factors associated with colistin resistance.
Methods. Urine samples from patients admitted with urinary tract infection (UTI), growing MDR Escherichia coli and Klebsiella pneumoniae , were tested for the minimum inhibitory concentration (MIC) of colistin by broth microdilution. Isolates with an MIC >2 µg ml−1 (resistant) were subjected to polymerase chain reaction (PCR) for the mcr1, mcr2 and mgrB genes. A case–control study with 21 cases (resistant) and 42 matched controls (sensitive) was designed to evaluate risk factors and outcomes (recurrent UTI, readmission and hospital stay >2 weeks).
Results. Two hundred and fifty MDR isolates ( E. coli =142/2319 and K.pneumoniae=108/775) from 216 patients were selected from the 25 046 isolates screened. Twenty-five isolates (20 K.pneumoniae and 5 E. coli ) were resistant to colistin, with a prevalence of 3.52 % in E. coli and 18.5 % in K. pneumoniae among the MDR isolates. PCR for the mcr1 and mcr2 genes was negative. Multivariate regression showed that multiple episodes of hospitalization, hospital stay >2 weeks, exposure to >three antibiotic classes and abnormality/surgery of the lower urinary tract were the significant risk factors for colistin resistance. Previous use of colistin and colistin resistance had a significant effect on all outcomes.
Conclusions. K. pneumoniae show six times higher prevalence of colistin resistance than E. coli , and the emergence of resistant organisms has led to an increase in morbidity in infected patients.
-
-
-
Heterogeneity of ROS levels in antibiotic-exposed mycobacterial subpopulations confers differential susceptibility
Phenotypically heterogeneous but genetically identical mycobacterial subpopulations exist in in vitro cultures, in vitro-infected macrophages, infected animal models and tuberculosis patients. In this regard, we recently reported the presence of two subpopulations of cells, which are phenotypically different in length and buoyant density, in mycobacterial cultures. These are the low-buoyant-density short-sized cells (SCs), which constitute ~10–20 % of the population, and the high-buoyant-density normal/long-sized cells (NCs), which form ~80–90 % of the population. The SCs were found to be significantly more susceptible to rifampicin (RIF), isoniazid (INH), H2O2 and acidified nitrite than the NCs. Here we report that the RIF-/INH-/H2O2-exposed SCs showed significantly higher levels of oxidative stress and therefore higher susceptibility than the equivalent number of exposed NCs. Significantly higher levels of hydroxyl radical and superoxide were found in the antibiotic-exposed SCs than in the equivalently exposed NCs. Different proportions of the subpopulation of SCs were found to have different levels of reactive oxygen species (ROS). The hydroxyl radical quencher, thiourea, and the superoxide dismutase mimic, TEMPOL, significantly reduced hydroxyl radical and superoxide levels, respectively, in the antibiotic-exposed SCs and NCs and thereby decreased their differential susceptibility to antibiotics. Thus, the present study shows that the heterogeneity of the reactive oxygen species (ROS) levels in these mycobacterial subpopulations confers differential susceptibility to antibiotics. We have discussed the possible mechanisms that can generate differential ROS levels in the antibiotic-exposed SCs and NCs. The present study advances our current understanding of the molecular mechanisms underlying antibiotic tolerance in mycobacteria.
-
-
-
Reduced vancomycin susceptibility and increased macrophage survival in Staphylococcus aureus strains sequentially isolated from a bacteraemic patient during a short course of antibiotic therapy
Purpose. The purpose of the present study was to determine the relatedness of Staphylococcus aureus strains successively isolated over a 7-day period from a single bacteraemic patient undergoing antibiotic treatment with vancomycin.
Methods. The S. aureus strains had been isolated and sequenced previously. Antibiotic susceptibility testing, population analysis profiling, and lysostaphin sensitivity and phagocytic killing assays were used to characterize these clonal isolates.
Results. The seven isolates (MEH1–MEH7) were determined to belong to a common multilocus sequence type (MLST) and spa type. Within the third and fifth day of vancomycin treatment, mutations were observed in the vraS and rpsU genes, respectively. Population analysis profiles revealed that the initial isolate (MEH1) was vancomycin-susceptible S. aureus (VSSA), while those isolated on day 7 were mostly heteroresistant vancomycin-intermediate S. aureus (hVISA). Supporting these findings, MEH7 was also observed to be slower in growth, to have an increase in cell wall width and to have reduced sensitivity to lysostaphin, all characteristics of VISA and hVISA strains. In addition, MEH7, although phagocytosed at numbers comparable to the initial isolate, MEH1, survived in higher numbers in RAW 264.7 macrophages. Macrophages infected with MEH7 also released more TNF-α and IFN-1β.
Conclusion. We report an increasing resistance to vancomycin coupled with daptomycin that occurred within approximately 3 days of receiving vancomycin and steadily increased until the infection was cleared with an alternative antibiotic therapy. This study reiterates the need for rapid, efficient and accurate detection of hVISA and VISA infections, especially in high-bacterial load, metastatic infections like bacteraemia.
-
-
-
Whole genome sequencing of NDM-1-producing serotype K1 ST23 hypervirulent Klebsiella pneumoniae in China
Bao-Tao Liu and Wei-Qi SuPurpose. The emergence and spread of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is causing worldwide concern, whereas NDM-producing hvKP is still rare. Here we report the complete genome sequence characteristics of an NDM-1-producing ST23 type clinical hvKP in PR China.
Methodology. Capsular polysaccharide serotyping was performed by PCR. The complete genome sequence of isolate 3214 was obtained using both the Illumina Hiseq platform and Pacbio RS platform. Multilocus sequence type was identified by submitting the genome sequence to mlst 2.0 and the antimicrobial resistance genes and plasmid replicons were identified using ResFinder and PlasmidFinder, respectively. Transferability of the bla NDM-1-bearing plasmid was determined by conjugation experiment, S1 pulsed-field gel electrophoresis and Southern hybridization.
Results. Isolate 3214 was classified to ST23 and belonged to the K1 capsular serotype. The isolate’s total genome size was 6 171 644 bp with a G+C content of 56.39 %, consisting of a 5 448 209 bp chromosome and seven plasmids. The resistome included 18 types of antibiotic resistance genes. Fourteen resistance genes including bla NDM-1 and bla CTX-M-14 were located on plasmids and five also including bla CTX-M-14 were in the chromosome. Plasmid pNDM_3214 carrying bla NDM-1 harboured six types of resistance genes surrounded by insertion sequences and was conjugative. The worldwide pLVPK-like virulence plasmid harbouring rmpA2 and rmpA was also found in this isolate.
Conclusion. This study provides basic information of phenotypic and genomic features of ST23 CR-hvKP isolate 3214. Our data highlights the potential risk of spread of NDM-1-producing ST23 hvKP.
-
-
-
Antibiotic resistomes of healthy pig faecal metagenomes
More LessAntibiotic resistance reservoirs within food-producing animals are thought to be a risk to animal and human health. This study describes the minimum natural resistome of pig faeces as the bacteria are under no direct antibiotic selective pressure. The faecal resistome of 257 different genes comprised 56 core and 201 accessory resistance genes. The genes present at the highest relative abundances across all samples were tetW, tetQ, tet44, tet37, tet40, mefA, aadE, ant(9)−1, ermB and cfxA2. This study characterized the baseline resistome, the microbiome composition and the metabolic components described by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in healthy pig faeces, without antibiotic selective pressures. The microbiome hierarchical analysis resulted in a cluster tree with a highly similar pattern to that of the accessory resistome cluster tree. Functional capacity profiling identified genes associated with horizontal gene transfer. We identified a statistically significant positive correlation between the total antibiotic resistome and suggested indicator genes, which agree with using these genes as indicators of the total resistomes. The correlation between total resistome and total microbiome in this study was positive and statistically significant. Therefore, the microbiome composition influenced the resistome composition. This study identified a core and accessory resistome present in a cohort of healthy pigs, in the same conditions without antibiotics. It highlights the presence of antibiotic resistance in the absence of antibiotic selective pressure and the variability between animals even under the same housing, food and living conditions. Antibiotic resistance will remain in the healthy pig gut even when antibiotics are not used. Therefore, the risk of antibiotic resistance transfer from animal faeces to human pathogens or the environment will remain in the absence of antibiotics.
-
-
-
Caribbean multi-centre study of Klebsiella pneumoniae: whole-genome sequencing, antimicrobial resistance and virulence factors
More LessThe surveillance of antimicrobial-resistant isolates has proven to be one of the most valuable tools to understand the global rise of multidrug-resistant bacterial pathogens. We report the first insights into the current situation in the Caribbean, where a pilot project to monitor antimicrobial resistance (AMR) through phenotypic resistance measurements combined with whole-genome sequencing was set up in collaboration with the Caribbean Public Health Agency (CARPHA). Our first study focused on Klebsiella pneumoniae , a highly relevant organism amongst the Gram-negative opportunistic pathogens worldwide causing hospital- and community-acquired infections. Our results show that not only carbapenem resistance, but also hypervirulent strains, are circulating in patients in the Caribbean. Our current data does not allow us to infer their prevalence in the population. We argue for the urgent need to further support AMR surveillance and stewardship in this almost uncharted territory, which can make a significant impact on the reduction of antimicrobial usage. This article contains data hosted by Microreact (https://microreact.org).
-
-
-
Genomic profile of Brazilian methicillin-resistant Staphylococcus aureus resembles clones dispersed worldwide
Purpose. Comparative genomic analysis of strains may help us to better understand the wide diversity of their genetic profiles. The aim of this study was to analyse the genomic features of the resistome and virulome of Brazilian first methicillin-resistant Staphylococcus aureus (MRSA) isolates and their relationship to other Brazilian and international MRSA strains.
Methodology. The whole genomes of three MRSA strains previously isolated in Vitória da Conquista were sequenced, assembled, annotated and compared with other MRSA genomes. A phylogenetic tree was constructed and the pan-genome and accessory and core genomes were constructed. The resistomes and virulomes of all strains were identified.
Results/Key findings. Phylogenetic analysis of all 49 strains indicated different clones showing high similarity. The pan-genome of the analysed strains consisted of 4484 genes, with 31 % comprising the gene portion of the core genome, 47 % comprising the accessory genome and 22 % being singletons. Most strains showed at least one gene related to virulence factors associated with immune system evasion, followed by enterotoxins. The strains showed multiresistance, with the most recurrent genes conferring resistance to beta-lactams, fluoroquinolones, aminoglycosides and macrolides.
Conclusions. Our comparative genomic analysis showed that there is no pattern of virulence gene distribution among the clones analysed in the different regions. The Brazilian strains showed similarity with clones from several continents.
-
-
-
Genomic surveillance of Escherichia coli in municipal wastewater treatment plants as an indicator of clinically relevant pathogens and their resistance genes
We examined whether genomic surveillance of Escherichia coli in wastewater could capture the dominant E. coli lineages associated with bloodstream infection and livestock in the East of England, together with the antibiotic-resistance genes circulating in the wider E. coli population. Treated and untreated wastewater was taken from 20 municipal treatment plants in the East of England, half in direct receipt of acute hospital waste. All samples were culture positive for E. coli , and all but one were positive for extended-spectrum β-lactamase (ESBL)-producing E. coli . The most stringent wastewater treatment (tertiary including UV light) did not eradicate ESBL- E. coli in 2/3 cases. We sequenced 388 E. coli (192 ESBL, 196 non-ESBL). Multilocus sequence type (ST) diversity was similar between plants in direct receipt of hospital waste versus the remainder (93 vs 95 STs, respectively). We compared the genomes of wastewater E. coli with isolates from bloodstream infection (n=437), and livestock farms and retail meat (n=431) in the East of England. A total of 19/20 wastewater plants contained one or more of the three most common STs associated with bloodstream infection (ST131, ST73, ST95), and 14/20 contained the most common livestock ST (ST10). In an analysis of 1254 genomes (2 cryptic E. coli were excluded), wastewater isolates were distributed across the phylogeny and intermixed with isolates from humans and livestock. Ten bla CTX-M elements were identified in E. coli isolated from wastewater, together with a further 47 genes encoding resistance to the major antibiotic drug groups. Genes encoding resistance to colistin and the carbapenems were not detected. Genomic surveillance of E. coli in wastewater could be used to monitor new and circulating lineages and resistance determinants of public-health importance.
-
-
-
Introducing BAIT (Biofilm Architecture Inference Tool): a software program to evaluate the architecture of oral multi-species biofilms
Biofilm model systems are used to study biofilm growth and predict the effects of anti-biofilm interventions within the human oral cavity. Many in vitro biofilm model systems use a confocal laser scanning microscope (CLSM) in conjunction with image analysis tools to study biofilms. The aim of this study was to evaluate an in-house developed image analysis software program that we call BAIT (Biofilm Architecture Inference Tool) to quantify the architecture of oral multi-species biofilms following anti-biofilm interventions using a microfluidic biofilm system. Differences in architecture were compared between untreated biofilms and those treated with water (negative control), sodium gluconate (‘placebo’) or stannous fluoride (SnF2). The microfluidic system was inoculated with pooled human saliva and biofilms were developed over 22 h in filter-sterilized 25 % pooled human saliva. During this period, biofilms were treated with water, sodium gluconate, or SnF2 (1000, 3439 or 10 000 p.p.m. Sn2+) 8 and 18 h post-inoculation. After 22 h of growth, biofilms were stained with LIVE/DEAD stain, and imaged by CLSM. BAIT was used to calculate biofilm biovolume, total number of objects, surface area, fluffiness, connectivity, convex hull porosity and viability. Image analysis showed oral biofilm architecture was significantly altered by 3439 and 10 000 p.p.m. Sn2+ treatment regimens, resulting in decreased biovolume, surface area, number of objects and connectivity, while fluffiness increased (P<0.01). In conclusion, BAIT was shown to be able to measure the changes in biofilm architecture and detects possible antimicrobial and anti-biofilm effects of candidate agents.
-
-
-
Synergistic potential of Juniperus communis and Helichrysum italicum essential oils against nontuberculous mycobacteria
Objective. The present study evaluated the possible synergistic antimycobacterial interactions of Juniperus communis and Helichrysum italicum essential oils (EO).
Methods. Antimycobacterial potential was tested against Mycobacterium avium and Mycobacterium intracellulare using broth and water dilution method and checkerboard synergy method. Antiadhesion and antibiofilm effect of EOs was evaluated on biotic (HeLa cells) and abiotic surface (polystyrene). To evaluate the possible mechanisms of action, cellular leakage of proteins and DNA was tested and structural changes were visualized with a transmission electron microscope.
Results. MIC, minimum bactericidal concentration (MBC) and minimal effective concentration (MEC) were 1.6 mg ml−1 for J. communis EO and 3.2 mg ml−1 for H. italicum EO against both mycobacteria. All combinations of EOs in checkerboard synergy method produced fractional inhibitory concentration index values ranging from 0.501 to 1.5, corresponding to synergistic, additive or indifferent effects. Mycobacterium avium showed a greater tendency to create biofilm but these EOs at subinhibitory concentrations (sMIC) effectively blocked the adhesion and the establishment of biofilm. The exposure of both mycobacteria to MICs and sMICs lead to significant morphological changes: acquired a swollen form, ghost-like cell, disorganized cytoplasm detached from the cell wall. OD value of supernatant for both mycobacteria exposed to EOs have confirmed that there is a leakage of cellular material.
Conclusion. The leakage of the cellular material is noticeably higher in sMIC, which is probably due to cell wall damage. sMIC of both EOs have an additive or synergistic effect, reducing MICs, limiting adhesion and preventing the formation of biofilms.
-
-
-
The potential of fosfomycin for multi-drug resistant sepsis: an analysis of in vitro activity against invasive paediatric Gram-negative bacteria
P urpose . Antimicrobial resistance (AMR) is of increasing global concern, threatening to undermine recent progress in reducing child and neonatal mortality. Repurposing older antimicrobials is a prominent strategy to combat multidrug-resistant sepsis. A potential agent is fosfomycin, however, there is scarce data regarding its in vitro activity and pharmacokinetics in the paediatric population.
M ethodology . We analysed a contemporary, systematically collected archive of community-acquired (CA) and hospital-acquired (HA) paediatric Gram-negative bacteraemia isolates for their susceptibility to fosfomcyin. MICs were determined using agar serial dilution methods and validated by disk diffusion testing where breakpoints are available. Disk diffusion antimicrobial susceptibility testing was also conducted for current empirical therapies (ampicillin, gentamicin, ceftriaxone) and amikacin (proposed in the literature as a new combination empirical therapeutic option).
R esults . Fosfomycin was highly active against invasive Gram-negative isolates, including 90 % (202/224) of Enterobacteriaceae and 96 % (22/23) of Pseudomonas spp. Fosfomycin showed high sensitivity against both CA isolates (94 %, 142/151) and HA isolates (81 %, 78/96; P =0.0015). CA isolates were significantly more likely to be susceptible to fosfomycin than the current first-line empirical therapy (96 % vs 59 %, P <0.0001). Extended spectrum β-lactamases (ESBL) production was detected in 34 % (85/247) of isolates with no significant difference in fosfomycin susceptibility between ESBL-positive or -negative isolates [73/85 (86 %) vs 147/162 (91 %) respectively, P =0.245]. All isolates were susceptible to a fosfomycin-amikacin combination.
C onclusion . Gram-negative paediatric bacteraemia isolates are highly susceptible to fosfomycin, which could be combined with aminoglycosides as a new, carbapenem-sparing regimen to achieve excellent coverage to treat antimicrobial-resistant neonatal and paediatric sepsis.
-
-
-
Use of whole genome sequencing in surveillance for antimicrobial-resistant Shigella sonnei infections acquired from domestic and international sources
More LessShigella species are a major cause of gastroenteritis worldwide, and Shigella sonnei is the most common species isolated within the United States. Previous surveillance work in Pennsylvania documented increased antimicrobial resistance (AMR) in S. sonnei associated with reported illnesses. The present study examined a subset of these isolates by whole genome sequencing (WGS) to determine the relationship between domestic and international isolates, to identify genes that may be useful for identifying specific Global Lineages of S. sonnei and to test the accuracy of WGS for predicting AMR phenotype. A collection of 22 antimicrobial-resistant isolates from patients infected within the United States or while travelling internationally between 2009 and 2014 was chosen for WGS. Phylogenetic analysis revealed both international and domestic isolates were one of two previously defined Global Lineages of S. sonnei , designated Lineage II and Lineage III. Twelve of 17 alleles tested distinguish these two lineages. Lastly, genome analysis was used to identify AMR determinants. Genotypic analysis was concordant with phenotypic resistance for six of eight antibiotic classes. For aminoglycosides and trimethoprim, resistance genes were identified in two and three phenotypically sensitive isolates, respectively. This article contains data hosted by Microreact.
-
-
-
Functional characterization of BcrR: a one-component transmembrane signal transduction system for bacitracin resistance
More LessBacitracin is a cell wall targeting antimicrobial with clinical and agricultural applications. With the growing mismatch between antimicrobial resistance and development, it is essential we understand the molecular mechanisms of resistance in order to prioritize and generate new effective antimicrobials. BcrR is a unique membrane-bound one-component system that regulates high-level bacitracin resistance in Enterococcus faecalis . In the presence of bacitracin, BcrR activates transcription of the bcrABD operon conferring resistance through a putative ATP-binding cassette (ABC) transporter (BcrAB). BcrR has three putative functional domains, an N-terminal helix–turn–helix DNA-binding domain, an intermediate oligomerization domain and a C-terminal transmembrane domain. However, the molecular mechanisms of signal transduction remain unknown. Random mutagenesis of bcrR was performed to generate loss- and gain-of-function mutants using transcriptional reporters fused to the target promoter P bcrA . Fifteen unique mutants were isolated across all three proposed functional domains, comprising 14 loss-of-function and one gain-of-function mutant. The gain-of-function variant (G64D) mapped to the putative dimerization domain of BcrR, and functional analyses indicated that the G64D mutant constitutively expresses the P bcrA-luxABCDE reporter. DNA-binding and membrane insertion were not affected in the five mutants chosen for further characterization. Homology modelling revealed putative roles for two key residues (R11 and S33) in BcrR activation. Here we present a new model of BcrR activation and signal transduction, providing valuable insight into the functional characterization of membrane-bound one-component systems and how they can coordinate critical bacterial responses, such as antimicrobial resistance.
-