X-AMR, a pop-up journal

Antimicrobial resistance (AMR) is a cross-disciplinary issue, with ground-breaking studies currently bringing together clinicians and modellers, veterinary and soil scientists, microbiologists and anthropologists. Yet finding a home for the unique publications from this research is difficult. The Microbiology Society is providing such a home with a new pop-up journal for cross-disciplinary research on antimicrobial resistance: X-AMR.
We invite submissions in the form of research papers, mini-reviews or commentaries. For more information on X-AMR, including how to submit your article, see our FAQs page.
Included in this collection are a host of antimicrobial resistance papers already published across our portfolio. The latest X-AMR articles will appear as and when they are published. Read our Guest Editors' introductory Editorial here.
Collection Contents
61 - 80 of 122 results
-
-
Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere
The Burkholderia cepacia complex (Bcc) comprises a group of 24 species, many of which are opportunistic pathogens of immunocompromised patients and also are widely distributed in agricultural soils. Several Bcc strains synthesize strain-specific antagonistic compounds. In this study, the broad killing activity of B. cenocepacia TAtl-371, a Bcc strain isolated from the tomato rhizosphere, was characterized. This strain exhibits a remarkable antagonism against bacteria, yeast and fungi including other Bcc strains, multidrug-resistant human pathogens and plant pathogens. Genome analysis of strain TAtl-371 revealed several genes involved in the production of antagonistic compounds: siderophores, bacteriocins and hydrolytic enzymes. In pursuit of these activities, we observed growth inhibition of Candida glabrata and Paraburkholderia phenazinium that was dependent on the iron concentration in the medium, suggesting the involvement of siderophores. This strain also produces a previously described lectin-like bacteriocin (LlpA88) and here this was shown to inhibit only Bcc strains but no other bacteria. Moreover, a compound with an m/z 391.2845 with antagonistic activity against Tatumella terrea SHS 2008T was isolated from the TAtl-371 culture supernatant. This strain also contains a phage-tail-like bacteriocin (tailocin) and two chitinases, but the activity of these compounds was not detected. Nevertheless, the previous activities are not responsible for the whole antimicrobial spectrum of TAtl-371 seen on agar plates, suggesting the presence of other compounds yet to be found. In summary, we observed a diversified antimicrobial activity for strain TAtl-371 and believe it supports the biotechnological potential of this Bcc strain as a source of new antimicrobials.
-
-
-
Cinnamaldehyde disrupts biofilm formation and swarming motility of Pseudomonas aeruginosa
Bacterial biofilms can cause serious health care complications associated with increased morbidity and mortality. There is an urge to discover and develop new biofilm inhibitors from natural products or by modifying natural compounds or understanding the modes of action of existing compounds. Cinnamaldehyde (CAD), one of the major components of cinnamon oil, has been demonstrated to act as an antimicrobial agent against a number of Gram-negative and Gram-positive pathogens, including Pseudomonas aeruginosa, Helicobacter pylori and Listeria monocytogenes. Despite the mechanism of action of CAD against the model organism P. aeruginosa being undefined, based on its antimicrobial properties, we hypothesized that it may disrupt preformed biofilms of P. aeruginosa. The minimum inhibitory concentration (MIC) of CAD for planktonic P. aeruginosa was determined to be 11.8 mM. Membrane depolarization assays demonstrated disruption of the transmembrane potential of P. aeruginosa. CAD at 5.9 mM (0.5 MIC) disrupted preformed biofilms by 75.6 % and 3 mM CAD (0.25 MIC) reduced the intracellular concentrations of the secondary messenger, bis-(3′–5′)-cyclic dimeric guanosine monophosphate (c-di-GMP), which controls P. aeruginosa biofilm formation. The swarming motility of P. aeruginosa was also reduced by CAD in a concentration-dependent manner. Collectively, these findings show that sub-MICs of CAD can disrupt biofilms and other surface colonization phenotypes through the modulation of intracellular signalling processes.
-
-
-
Evaluation of the FilmArray Blood Culture Identification Panel compared to direct MALDI-TOF MS identification for rapid identification of pathogens
More LessTo improve time to identification of pathogens and detection of resistance genes, we evaluated the BioFire FilmArray Blood Culture Identification Panel (BCID) as compared to: (1) direct MALDI-TOF MS (DM) and (2) standardized culture-based identification (ID) with antibiotic susceptibility testing (AST). BCID gave an accurate identification in 102/112 (91 %) of cases (102/103 for on-panel organisms). DM gave an accurate identification in 91/112 (81 %) of cases, with 13/91 (14 %) requiring repeat testing from the residual pellet. The mean time to an identification result was 2.4 and 2.9 h for BCID and DM, respectively. Standardized ID and AST results were available at a mean time of 26.5 and 33 h, respectively. There were 44 BCID/DM results that had an antimicrobial treatment change made based on rapid identification and resistant gene detection of pathogens. Both BCID and DM are accurate and rapid methods for the identification of new positive blood culture pathogens.
-
-
-
Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations
Mobile genetic elements (MGEs) that frequently transfer within and between bacterial species play a critical role in bacterial evolution, and often carry key accessory genes that associate with a bacteria’s ability to cause disease. MGEs carrying antimicrobial resistance (AMR) and/or virulence determinants are common in the opportunistic pathogen Klebsiella pneumoniae, which is a leading cause of highly drug-resistant infections in hospitals. Well-characterised virulence determinants in K. pneumoniae include the polyketide synthesis loci ybt and clb (also known as pks), encoding the iron-scavenging siderophore yersiniabactin and genotoxin colibactin, respectively. These loci are located within an MGE called ICEKp, which is the most common virulence-associated MGE of K. pneumoniae, providing a mechanism for these virulence factors to spread within the population. Here we apply population genomics to investigate the prevalence, evolution and mobility of ybt and clb in K. pneumoniae populations through comparative analysis of 2498 whole-genome sequences. The ybt locus was detected in 40 % of K. pneumoniae genomes, particularly amongst those associated with invasive infections. We identified 17 distinct ybt lineages and 3 clb lineages, each associated with one of 14 different structural variants of ICEKp. Comparison with the wider population of the family Enterobacteriaceae revealed occasional ICEKp acquisition by other members. The clb locus was present in 14 % of all K. pneumoniae and 38.4 % of ybt+ genomes. Hundreds of independent ICEKp integration events were detected affecting hundreds of phylogenetically distinct K. pneumoniae lineages, including at least 19 in the globally-disseminated carbapenem-resistant clone CG258. A novel plasmid-encoded form of ybt was also identified, representing a new mechanism for ybt dispersal in K. pneumoniae populations. These data indicate that MGEs carrying ybt and clb circulate freely in the K. pneumoniae population, including among multidrug-resistant strains, and should be considered a target for genomic surveillance along with AMR determinants.
-
-
-
Genomic reorganization by IS26 in a bla NDM-5-bearing FII plasmid of Klebsiella pneumoniae isolated from a patient in Japan
An NDM-5-producing Klebsiella pneumoniae ST147 strain was isolated from a Japanese patient who had not travelled abroad in at least 5 years. Whole-genome sequencing revealed a genomic rearrangement in an FII plasmid harbouring bla NDM-5 due to the replicative transposition of IS26. A hypothetical structure was proposed for its ancestral plasmid, and comparative genomic analysis of the plasmid suggested the dissemination of structurally similar plasmids harbouring bla NDM-5 in Asian and Middle Eastern countries.
-
-
-
In vitro activity of β-lactams in combination with avibactam against multidrug-resistant Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Achromobacter xylosoxidans isolates from patients with cystic fibrosis
More LessThe in vitro activity of anti-pseudomonal β-lactams in combination with avibactam was evaluated against 54 multidrug-resistant non-fermenting Gram-negative bacilli isolated from cystic fibrosis patients. Avibactam increased and/or restored the antibacterial activities of ceftazidime and aztreonam against Pseudomonas aeruginosa and Stenotrophomonas maltophilia, respectively. No β-lactam–avibactam combination was active against Achromobacter xylosoxidans.
-
-
-
Molecular determinants of Burkholderia pseudomallei BpeEF-OprC efflux pump expression
Burkholderia pseudomallei, the cause of melioidosis, is intrinsically resistant to many antibiotics. Acquired multidrug resistance, including resistance to doxycycline and co-trimoxazole used for melioidosis eradication phase therapy, is mainly attributed to constitutive expression of the BpeEF-OprC efflux pump. Constitutive expression of this pump is caused by mutations affecting two highly similar LysR-type transcriptional regulators (LTTR), BpeT and BpeS, but their interaction with the regulatory region governing BpeEF-OprC expression has not yet been studied. The bpeE-bpeF-oprC genes are distally located in the llpE-bpeE-bpeF-oprC operon. The llpE gene encodes a putative lipase/esterase of unknown function. We show that in a bpeT mutant llpE is constitutively co-transcribed with bpeE-bpeF-oprC. As expected from previous studies with B. cenocepacia, deletion of llpE does not affect antibiotic efflux. Using transcriptional bpeE′-lacZ fusions, we demonstrate that the 188 bp bpeT-llpE intergenic region located between bpeT and the llpE-bpeE-bpeF-oprC operon contains regulatory elements needed for control of bpeT and llpE-bpeE-bpeF-oprC operon expression. By native polyacrylamide gel electrophoresis and electrophoretic mobility shift assays with purified recombinant BpeT and BpeS proteins, we show BpeT and BpeS form oligomers that share a 14 bp binding site overlapping the essential region required for llpE-bpeE-bpeF-oprC expression. The binding site contains the conserved T-N11-A LTTR box motif involved in binding of LysR proteins, which in concert with two other possible LTTR boxes may mediate BpeT and BpeS regulation of BpeEF-OprC expression. These studies form the basis for further investigation of BpeEF-OprC expression and regulation at the molecular level by yet unknown external stimuli.
-
-
-
Multicenter assessment of the rapid Unyvero Blood Culture molecular assay
Purpose. Bloodstream infections remain an important cause of morbidity and mortality. Rapid diagnosis can reduce the time from empiric antimicrobial therapy to targeted therapy and improve patient outcomes.
Methodology. The fully automated Unyvero Blood Culture (BCU) Application (Curetis GmbH) can identify a broad panel of pathogens (36 analytes covering over 50 pathogens) and 16 antibiotic resistance gene markers simultaneously in about 5 h. The assay was evaluated in three clinical laboratories in comparison to routine microbiological procedures.
Results. A total of 207 blood cultures were included in the study, and 90.5 % of the species identified by culture were covered by the Unyvero BCU panel with an overall sensitivity of 96.8 % and specificity of 99.8 %. The time to result was reduced on average by about 34 h. The assay accurately identified 95 % of the species, including 158/164 monomicrobial and 7/9 polymicrobial cultures. The Unyvero BCU Cartridge detected a large number of resistance markers including mecA (n=57), aac(6′)aph(2′′) (n=40), one vanB resistance gene, and six instances of bla CTX-M.
Conclusion. The Unyvero BCU Application provided fast, reliable results, while significantly improving turnaround time in blood culture diagnostics.
-
-
-
PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species level
More LessPlasmid prediction may be of great interest when studying bacteria of medical importance such as Enterobacteriaceae as well as Staphylococcus aureus or Enterococcus. Indeed, many resistance and virulence genes are located on such replicons with major impact in terms of pathogenicity and spreading capacities. Beyond strain outbreak, plasmid outbreaks have been reported in particular for some extended-spectrum beta-lactamase- or carbapenemase-producing Enterobacteriaceae. Several tools are now available to explore the ‘plasmidome’ from whole-genome sequences with various approaches, but none of them are able to combine high sensitivity and specificity. With this in mind, we developed PlaScope, a targeted approach to recover plasmidic sequences in genome assemblies at the species or genus level. Based on Centrifuge, a metagenomic classifier, and a custom database containing complete sequences of chromosomes and plasmids from various curated databases, PlaScope classifies contigs from an assembly according to their predicted location. Compared to other plasmid classifiers, PlasFlow and cBar, it achieves better recall (0.87), specificity (0.99), precision (0.96) and accuracy (0.98) on a dataset of 70 genomes of Escherichia coli containing plasmids. In a second part, we identified 20 of the 21 chromosomal integrations of the extended-spectrum beta-lactamase coding gene in a clinical dataset of E. coli strains. In addition, we predicted virulence gene and operon locations in agreement with the literature. We also built a database for Klebsiella and correctly assigned the location for the majority of resistance genes from a collection of 12 Klebsiella pneumoniae strains. Similar approaches could also be developed for other well-characterized bacteria.
-
-
-
Pyrosequencing: a rapid and effective sequencing method to diagnose drug-resistant tuberculosis
Purpose. This study was undertaken to evaluate the efficiency of the pyrosequencing (PSQ) assay for the rapid detection of resistance to rifampicin (RIF), fluoroquinolones (FQs) and second-line injectables (SLIs) such as capreomycin (CAP) and kanamycin (KAN) in Mycobacterium tuberculosis (Mtb) clinical isolates.
Methodology. Pyrosequencing is a simple and accurate short read DNA sequencing method for genome analysis. DNA extraction from Mtb clinical isolates was performed using Tris-HCl buffer and chloroform. The rpoB (RIF), gyrA (FQs) and rrs (aminoglycosides) genes were amplified, followed by sequencing using the PyroMark Q24 ID system. The PSQ results were compared with the results from the conventional drug susceptibility testing performed in the laboratory.
Results. The sensitivity of the PSQ assay for the detection of resistance to RIF, FQ, CAP and KAN was 100 %, 100 %, 40 % and 50 %, respectively. The specificity of the PSQ assay was 100 %.
Conclusion. The PSQ assay is a rapid and effective method for detecting drug resistance mutations from Mtb clinical isolates in a short period of time.
-
-
-
The endogenous antiseptic N-chlorotaurine irreversibly inactivates Chlamydia pneumoniae and Chlamydia trachomatis
More LessPurpose. The antimicrobial activity of N-chlorotaurine (NCT), an endogenous long-lived oxidant applied topically, was tested against Chlamydiae in vitro.
Methodology. Elementary bodies of Chlamydia pneumoniae strain CV-6 and Chlamydia trachomatis serovars A and D were incubated in 0.01, 0.1 and 1 % (w/v) NCT solution at pH 7.1 and 37 °C. After different incubation times, aliquots were removed and grown in cell culture. The number of inclusion forming units was quantified by immunofluorescence and real-time qPCR.
Results/Key findings. Chlamydia pneumoniae and Chlamydia trachomatis were inactivated by 1 and 0.1 % NCT within 1 min. Moreover, 0.025–0.1 % NCT significantly reduced the number of intracellularly growing C. pneumoniae within 30 min.
Conclusions. This is the first study demonstrating the antimicrobial activity of NCT against Chlamydiae. Clinical implications of these findings have to be investigated in further trials.
-
-
-
The return of Pfeiffer’s bacillus: Rising incidence of ampicillin resistance in Haemophilus influenzae
More LessHaemophilus influenzae, originally named Pfeiffer’s bacillus after its discoverer Richard Pfeiffer in 1892, was a major risk for global health at the beginning of the 20th century, causing childhood pneumonia and invasive disease as well as otitis media and other upper respiratory tract infections. The implementation of the Hib vaccine, targeting the major capsule type of H. influenzae, almost eradicated the disease in countries that adapted the vaccination scheme. However, a rising number of infections are caused by non-typeable H. influenzae (NTHi), which has no capsule and against which the vaccine therefore provides no protection, as well as other serotypes equally not recognised by the vaccine. The first line of treatment is ampicillin, but there is a steady rise in ampicillin resistance. This is both through acquired as well as intrinsic mechanisms, and is cause for serious concern and the need for more surveillance. There are also increasing reports of new modifications of the intrinsic ampicillin-resistance mechanism leading to resistance against cephalosporins and carbapenems, the last line of well-tolerated drugs, and ampicillin-resistant H. influenzae was included in the recently released priority list of antibiotic-resistant bacteria by the WHO. This review provides an overview of ampicillin resistance prevalence and mechanisms in the context of our current knowledge about population dynamics of H. influenzae.
-
-
-
Time-kill kinetics of cadazolid and comparator antibacterial agents against different ribotypes of Clostridium difficile
More LessPurpose. Clostridium difficile infection (CDI) is an increasing cause of nosocomial diarrhoea worldwide, which has been partly attributed to the emergence of hypervirulent strains including C. difficile BI/NAP1/ribotype 027 and BK/NAP7/ribotype 078. Cadazolid is a new antibiotic currently in late-stage clinical studies for the treatment of CDI. The present study evaluated the in vitro bactericidal effect of cadazolid and comparator antibiotics against four C. difficile strains. The data demonstrate the potent and bactericidal activity of cadazolid against different ribotypes of C. difficile.
Methodology. MICs for test antibiotics were determined in brain– heart infusion-supplemented broth (BHIS) containing 5 g l−1 yeast extract and 0.025 % (w/v) l-cysteine. Time-kill kinetics to investigate the rate of killing of each antibiotic at sub- and supra-MIC concentrations were performed at concentrations of 0.5, 1, 2, 4, 8 or 16× the MIC of cadazolid, vancomycin and fidaxomicin at intervals over a 48 h period.
Results/key findings. Cadazolid-mediated killing of C. difficile was faster and occurred at lower concentrations than observed for vancomycin, while potency and killing was largely comparable to those observed for fidaxomicin. Notably, cadazolid also displayed a potent bactericidal effect against fluoroquinolone-resistant hypervirulent ribotype 027 and 078 strains. C. difficile spore formation was largely inhibited by all three antibiotics at concentrations >1× MIC; however, none were able to eliminate spores effectively, which were present at the start of the experiment.
Conclusion. The data presented here demonstrate the potent in vitro bactericidal activity of cadazolid against different ribotypes of C. difficile, although on a limited set of strains.
-
-
-
A clinical isolate of Escherichia coli co-harbouring mcr-1 and bla NDM-5 in Japan
More LessThe mcr-1 gene encodes a phosphoethanolamine transferase, which confers resistance to colistin by transferring phosphoethanolamine to lipid A. This study describes the emergence of a colistin- and carbapenem-resistant clinical isolate of Escherichia coli harbouring mcr-1 and bla NDM-5 genes, located on 90 and 150 Kb plasmids, respectively. The isolate belonged to ST132. This is the first report of a clinical isolate in Japan co-harbouring mcr-1 and bla NDM-5.
-
-
-
Antimicrobial resistance profiles of Shigella dysenteriae isolated from travellers returning to the UK, 2004–2017
Purpose. Antimicrobial resistance (AMR) profiles of 754 strains of Shigella dysenteriae isolated between 2004 and 2017 from UK travellers reporting symptoms of gastrointestinal (GI) disease were reviewed to look for evidence of emerging AMR associated with travellers’ diarrhoea.
Methodology. A travel history was provided for 72.7 % (548/754) of cases, of which 90.9 % (498/548) reported travel outside the UK within 7 days of onset of symptoms, and 9.1 % (50/498) reported no travel in that time frame. During the course of this study, whole genome sequencing (WGS) was implemented for GI disease surveillance, and we compared phenotypic AMR profiles with those derived from WGS data (n=133).
Results/Key findings. The phenotypic and genotypic AMR results correlated well, with 90.1 % (121/133) isolates having concordant results to 10 classes of antimicrobials. Resistance to the first-line drugs commonly used in the treatment of shigellosis was observed throughout the study (ampicillin, 54.1%; chloramphenicol, 33.7 %; sulphonamides, 76.0 %; trimethoprim, 80.0%). Between 2004 and 2017, resistance to all classes of antimicrobials (except the phenicols) increased. The proportion of isolates exhibiting reduced susceptibility to ciprofloxacin increased from 3.8 % in 2004 to 75.7 % in 2017, and this was significantly associated with cases reporting travel to Asia compared to Africa (P<0.001). Of the 201 sequenced isolates, 3.0 % (20/201) had either bla CTX-M-15 or bla CMY-4.
Conclusions. Increasing MDR, along with resistance to the fluroquinolones and the third generation cephalosporins, in Shigella dysenteriae causing travellers’ diarrhoea provides further evidence for the need to regulatethe use of antimicrobial agents and continuous monitoring of emerging AMR.
-
-
-
Bactericidal efficacy of molybdenum oxide nanoparticles against antimicrobial-resistant pathogens
More LessMultidrug-resistant bacteria pose a major threat to effective antibiotics and alternatives to fight multidrug-resistant pathogens are needed. We synthetized molybdenum oxide (MoO3) nanoparticles (NP) and determined their antibacterial activity against 39 isolates: (i) eight Staphylococcus aureus, including representatives of methicillin-resistant S. aureus epidemic clones; (ii) six enterococci, including vancomycin-resistant isolates; and (iii) 25 Gram-negative isolates (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae), including extended spectrum beta-lactamases and carbapenemases producers. All isolates showed a MoO3 NP MIC of 700–800 mg l−1. MoO3 NP produced a clear inhibition zone for S. aureus and all Gram-negative isolates at concentrations ≥25 mg ml−1 and ≥50 mg ml−1 for enterococci. When the NP solutions were adjusted to pH ~7, the biocidal activity was completely abolished. MoO3 NP create an acidic pH and show a universal antimicrobial activity against susceptible and resistant isolates belonging to the most relevant bacterial species responsible for hospital-acquired infections.
-
-
-
Comprehensive screening of antimicrobials to control phytoplasma diseases using an in vitro plant–phytoplasma co-culture system
Phytoplasmas are plant-pathogenic bacteria that infect many important crops and cause serious economic losses worldwide. However, owing to an inability to culture phytoplasmas, screening of antimicrobials on media is difficult. The only antimicrobials being used to control phytoplasmas are tetracycline-class antibiotics. In this study, we developed an accurate and efficient screening method to evaluate the effects of antimicrobials using an in vitro plant–phytoplasma co-culture system. We tested 40 antimicrobials, in addition to tetracycline, and four of these (doxycycline, chloramphenicol, thiamphenicol and rifampicin) decreased the accumulation of ‘Candidatus (Ca.) Phytoplasma asteris'. The phytoplasma was eliminated from infected plants by the application of both tetracycline and rifampicin. We also compared nucleotide sequences of rRNAs and amino acid sequences of proteins targeted by antimicrobials between phytoplasmas and other bacteria. Since antimicrobial target sequences were conserved among various phytoplasma species, the antimicrobials that decreased accumulation of ‘Ca. P. asteris' may also have been effective against other phytoplasma species. These approaches will provide new strategies for phytoplasma disease management.
-
-
-
Epidemic spread of OXA-48 beta-lactamase in Croatia
Branka Bedenić, Mia Slade, Lidija Žele Starčević, Sanda Sardelić, Mirna Vranić-Ladavac, Ana Benčić, Vlasta Zujić Atalić, Maja Bogdan, Marina Bubonja-Šonje, Maja Tomić-Paradžik, Tatjana Tot, Amarela Lukić-Grlić, Domagoj Drenjančević, Dijana Varda-Brkić, Daniela Bandić-Pavlović, Slobodan Mihaljević, Gernot Zarfel, Marija Gužvinec, Rick Conzemius, Ivan Barišić and Arjana Tambić-AndraševicPurpose. A dramatic increase in OXA-48 β-lactamase was observed recently not only in large hospital centres, but also in smaller suburban hospital centres in geographic areas bordering Croatia. The aim of the study was to analyse the epidemiology, the mechanisms of antibiotic resistance and the routes of spread of OXA-48 carbapenemase in Croatia.
Methods. Carbapenemase and other β-lactamase and fluoroquinolone resistance genes were detected by PCR and sequencing. Whole-genome sequencing (WGS) was performed on five representative isolates. The isolates were genotyped by PFGE.
Results. Forty-eight isolates positive for OXA-48, collected from seven hospital centres in Croatia from May 2016 to May 2017, were analysed (40 Klebsiella pneumoniae, 5 Enterobacter cloacae, 2 Escherichia coli and one Citrobacter freundii). Thirty-three isolates were ESBL positive and harboured group 1 CTX-M 1 β-lactamases. In addition to the β-lactam resistance genes detected by PCR (bla SHV-1, bla OXA-48 and bla OXA-1), WGS of five representative isolates revealed the presence of genes encoding aminoglycoside resistance, aadA2 and aph3-Ia, fluoroquinolone resistance determinants aac(6)Ib-c, oqxA and oqxB, the sulfonamide resistance gene sul1, and fosA (fosfomycin resistance). IncL plasmid was found in all isolates. Two K. pneumoniae isolates belonged to ST16, two E. cloacae to ST66 and E. coli to ST354. K. pneumoniae isolates were allocated to five clusters by PFGE which occured in different hospitals, indicating epidemic spread.
Conclusions. The OXA-48-positive organisms found in this study showed wide variability in antibiotic susceptibility, β-lactamase content and PFGE banding patterns. This study revealed a switch from the predominance of VIM-1 in 2012–2013 to that of OXA-48 in the 2015 to 2017.
-
-
-
Genome analysis of methicillin resistance in Macrococcus caseolyticus from dairy cattle in England and Wales
More LessSpecies of the genus Macrococcus are widespread commensals of animals but are becoming increasingly recognised as veterinary pathogens. They can encode methicillin resistance and are implicated in its spread to the closely-related, but more pathogenic, staphylococci. In this study we have identified 33 isolates of methicillin-resistant Macrococcus caseolyticus from bovine bulk tank milk from England and Wales. These isolates were characterised to provide insight into the molecular epidemiology of M. caseolyticus and to discern the genetic basis for their methicillin resistance. Antimicrobial susceptibility testing was performed by Vitek2 and disc diffusion. Isolates were whole-genome sequenced to evaluate phylogenetic relationships and the presence of methicillin resistance determinants, mecA–D. All 33 isolates were phenotypically methicillin-resistant according to cefoxitin disc diffusion, cefoxitin Etest and oxacillin resistance assessed by Vitek2. In contrast only a single isolate was resistant in the Vitek2 cefoxitin screen. Twenty-seven isolates were positive for mecD and six were positive for mecB. mecA and mecC were not detected. The results of phylogenetic analysis indicated that these methicillin-resistant isolates represented a heterogeneous population with both mecB and mecD found in diverse isolates. Isolates had a widespread distribution across the sampled region. Taken together with the role of M. caseolyticus in veterinary infections, including bovine mastitis, and in the potential spread of methicillin resistance to more pathogenic staphylococci, this work highlights the need to better understand their epidemiology and for increased awareness among veterinary microbiology laboratories.
-
-
-
Genomic surveillance of Neisseria gonorrhoeae to investigate the distribution and evolution of antimicrobial-resistance determinants and lineages
The first extensively drug resistant (XDR) Neisseria gonorrhoeae strain with high resistance to the extended-spectrum cephalosporin ceftriaxone was identified in 2009 in Japan, but no other strain with this antimicrobial-resistance profile has been reported since. However, surveillance to date has been based on phenotypic methods and sequence typing, not genome sequencing. Therefore, little is known about the local population structure at the genomic level, and how resistance determinants and lineages are distributed and evolve. We analysed the whole-genome sequence data and the antimicrobial-susceptibility testing results of 204 strains sampled in a region where the first XDR ceftriaxone-resistant N. gonorrhoeae was isolated, complemented with 67 additional genomes from other time frames and locations within Japan. Strains resistant to ceftriaxone were not found, but we discovered a sequence type (ST)7363 sub-lineage susceptible to ceftriaxone and cefixime in which the mosaic penA allele responsible for reduced susceptibility had reverted to a susceptible allele by recombination. Approximately 85 % of isolates showed resistance to fluoroquinolones (ciprofloxacin) explained by linked amino acid substitutions at positions 91 and 95 of GyrA with 99 % sensitivity and 100 % specificity. Approximately 10 % showed resistance to macrolides (azithromycin), for which genetic determinants are less clear. Furthermore, we revealed different evolutionary paths of the two major lineages: single acquisition of penA X in the ST7363-associated lineage, followed by multiple independent acquisitions of the penA X and XXXIV in the ST1901-associated lineage. Our study provides a detailed picture of the distribution of resistance determinants and disentangles the evolution of the two major lineages spreading worldwide.
-