X-AMR, a pop-up journal

Antimicrobial resistance (AMR) is a cross-disciplinary issue, with ground-breaking studies currently bringing together clinicians and modellers, veterinary and soil scientists, microbiologists and anthropologists. Yet finding a home for the unique publications from this research is difficult. The Microbiology Society is providing such a home with a new pop-up journal for cross-disciplinary research on antimicrobial resistance: X-AMR.
We invite submissions in the form of research papers, mini-reviews or commentaries. For more information on X-AMR, including how to submit your article, see our FAQs page.
Included in this collection are a host of antimicrobial resistance papers already published across our portfolio. The latest X-AMR articles will appear as and when they are published. Read our Guest Editors' introductory Editorial here.
Collection Contents
-
-
Synergistic potential of Juniperus communis and Helichrysum italicum essential oils against nontuberculous mycobacteria
Objective. The present study evaluated the possible synergistic antimycobacterial interactions of Juniperus communis and Helichrysum italicum essential oils (EO).
Methods. Antimycobacterial potential was tested against Mycobacterium avium and Mycobacterium intracellulare using broth and water dilution method and checkerboard synergy method. Antiadhesion and antibiofilm effect of EOs was evaluated on biotic (HeLa cells) and abiotic surface (polystyrene). To evaluate the possible mechanisms of action, cellular leakage of proteins and DNA was tested and structural changes were visualized with a transmission electron microscope.
Results. MIC, minimum bactericidal concentration (MBC) and minimal effective concentration (MEC) were 1.6 mg ml−1 for J. communis EO and 3.2 mg ml−1 for H. italicum EO against both mycobacteria. All combinations of EOs in checkerboard synergy method produced fractional inhibitory concentration index values ranging from 0.501 to 1.5, corresponding to synergistic, additive or indifferent effects. Mycobacterium avium showed a greater tendency to create biofilm but these EOs at subinhibitory concentrations (sMIC) effectively blocked the adhesion and the establishment of biofilm. The exposure of both mycobacteria to MICs and sMICs lead to significant morphological changes: acquired a swollen form, ghost-like cell, disorganized cytoplasm detached from the cell wall. OD value of supernatant for both mycobacteria exposed to EOs have confirmed that there is a leakage of cellular material.
Conclusion. The leakage of the cellular material is noticeably higher in sMIC, which is probably due to cell wall damage. sMIC of both EOs have an additive or synergistic effect, reducing MICs, limiting adhesion and preventing the formation of biofilms.
-
-
-
Synergistic activity of polymyxin B combined with vancomycin against carbapenem-resistant and polymyxin-resistant Acinetobacter baumannii: first in vitro study
Purpose. The effect of a combination of polymyxin B (PMB) and vancomycin (VAN) was assessed against six Acinetobacter baumannii clinical isolates belonging to six different clusters (three PMB-susceptible and three PMB-resistant).
Methodology. The synergistic effect of the PMB–VAN combination was determined with the checkerboard, time-kill, disk-diffusion and M.I.C.Evaluator assays. PMB-resistance was investigated with mcr-1 gene amplification and a mutant frequency assay.
Results. In the checkerboard assay, all PMB-resistant isolates showed a synergistic effect. The time-kill assay demonstrated that the PMB–VAN combination had a bactericidal effect at 24 h against isolates with a high mutant rate for PMB, suggesting that this combination may block the hypermutation of some isolates. No antagonism was detected. All PMB-resistant isolates also showed synergism in the disk-diffusion test, and a significant decrease in VAN MICs in the M.I.C.Evaluator assay.
Conclusion. Our findings indicate that the PMB–VAN combination has a synergistic effect on A. baumannii , especially against PMB-resistant isolates.
-
-
-
Salmonella infection – prevention and treatment by antibiotics and probiotic yeasts: a review
More LessGlobal Salmonella infection, especially in developing countries, is a health and economic burden. The use of antibiotic drugs in treating the infection is proving less effective due to the alarming rise of antibiotic-resistant strains of Salmonella, the effects of antibiotics on normal gut microflora and antibiotic-associated diarrhoea, all of which bring a growing need for alternative treatments, including the use of probiotic micro-organisms. However, there are issues with probiotics, including their potential to be opportunistic pathogens and antibiotic-resistant carriers, and their antibiotic susceptibility if used as complementary therapy. Clinical trials, animal trials and in vitro investigations into the prophylactic and therapeutic efficacies of probiotics have demonstrated antagonistic properties against Salmonella and other enteropathogenic bacteria. Nonetheless, there is a need for further studies into the potential mechanisms, efficacy and mode of delivery of yeast probiotics in Salmonella infections. This review discusses Salmonella infections and treatment using antibiotics and probiotics.
-
-
-
Surveillance of antimicrobial resistance in Neisseria meningitidis strains isolated from invasive cases in Brazil from 2009 to 2016
Purpose. To describe the antimicrobial resistance profile of Neisseria meningitidis isolates causing invasive disease in Brazil from 2009 to 2016.
Methodology. Among 3548 N. meningitidis isolates received, 2888 (81.4 %) were analysed for antimicrobial resistance using the broth microdilution technique, as recommended by the Clinical and Laboratory Standards Institute. Isolates were tested for ciprofloxacin, chloramphenicol, ceftriaxone, penicillin G, ampicillin and rifampin.
Results. All the isolates tested were susceptible to ceftriaxone, while 953 (33.0 %), 1307 (45.3 %) and 2 (0.07 %) isolates were penicillin G-, ampicillin- and rifampin-intermediate, respectively. Resistance to rifampin, ciprofloxacin and chloramphenicol was shown by three isolates (0.1 %), two isolates (0.07 %) and one (0.03 %) isolate, respectively. Although no isolates were resistant to penicillin G in the period of 2009–2016, our results show an upward trend in minimum inhibitory concentrations (MICs) for this drug as of 2010 (P<0.001). There was no significant difference between different gender and age groups of patients for reduced susceptibility to penicillin G. There was a higher frequency of isolates with reduced susceptibility to penicillin G in the South and Southeast regions (P<0.001). This reduced susceptibility was also associated with serotype 19 inside serogroup B (P<0.001).
Conclusion. Despite the decrease in susceptibility to penicillin G and ampicillin observed from 2010, the overall resistance of N. meningitidis isolates to the antimicrobials tested remained uncommon and sporadic, confirming their efficacy for chemoprophylaxis or treatment of invasive meningococcal disease (IMD) in Brazil. Continued surveillance of N. meningitidis antimicrobial susceptibility profiles is important in order to monitor variations in resistance either geographically, over time or in association with emergent clones.
-
-
-
Survival of bactericidal antibiotic treatment by tolerant persister cells of Klebsiella pneumoniae
More LessPurpose. Persister cells, a subpopulation of tolerant cells within the bacterial culture, are commonly thought to be responsible for antibiotic therapy failure and infection recurrence. Klebsiella pneumoniae is a notorious human pathogen for its increasing resistance to antibiotics and wide involvement in severe infections. In this study, we aimed to investigate the persister subpopulation of K. pneumoniae.
Methodology. The presence of persisters in K. pneumoniae was determined by treatment with high concentrations of antibiotics, used alone or in combination. The effect of low level of antibiotics on persister formation was investigated by pre-exposure of cells to antibiotics with low concentrations followed by higher doses. The dependence of persister levels on growth phase was determined by measuring the survival ability of cells along the growth stages upon exposure to a high concentration of antibiotic. Analysis on persister type was carried out by persister elimination assays.
Results/Key findings. We show that K. pneumoniae produces high levels of tolerant persister cells to survive treatment by a variety of high concentrations of bactericidal antibiotics and persister formation is prevalent among K. pneumoniae clinical strains. Besides, we find that persister cells can be induced by low concentrations of antibiotics. Finally, we provide evidence that persister formation is growth phase-dependent and Type II persisters dominate the persister subpopulation during the entire exponential phase of K. pneumoniae.
Conclusion. Our study describes the formation of tolerant persister cells that allow survival of treatment by high concentrations of antibiotics in K. pneumoniae.
-