X-AMR, a pop-up journal

Antimicrobial resistance (AMR) is a cross-disciplinary issue, with ground-breaking studies currently bringing together clinicians and modellers, veterinary and soil scientists, microbiologists and anthropologists. Yet finding a home for the unique publications from this research is difficult. The Microbiology Society is providing such a home with a new pop-up journal for cross-disciplinary research on antimicrobial resistance: X-AMR.
We invite submissions in the form of research papers, mini-reviews or commentaries. For more information on X-AMR, including how to submit your article, see our FAQs page.
Included in this collection are a host of antimicrobial resistance papers already published across our portfolio. The latest X-AMR articles will appear as and when they are published. Read our Guest Editors' introductory Editorial here.
Collection Contents
-
-
Rapid antimicrobial susceptibility tests for sepsis; the road ahead
More LessCurrent methods for antimicrobial susceptibility testing (AST) are too slow to affect initial treatment decisions in the early stages of sepsis, when the prescriber is most concerned to select effective therapy immediately, rather than finding out what will not work 1 or 2 days later. There is a clear need for much faster differentiation between viral and bacterial infection, and AST, linked to earlier aetiological diagnosis, without sacrificing either the accuracy of quantitative AST or the low cost of qualitative AST. Truly rapid AST methods are eagerly awaited, and there are several candidate technologies that aim to improve the targeting of our limited stock of effective antimicrobial agents. However, none of these technologies are approaching the point of care and nor can they be described as truly culture-independent diagnostic tests. Rapid chemical and genomic methods of resistance detection are not yet reliable predictors of antimicrobial susceptibility and often rely on prior bacterial isolation. In order to resolve the trade-off between diagnostic confidence and therapeutic efficacy in increasingly antimicrobial-resistant sepsis, we propose a series of three linked decision milestones: initial clinical assessment (e.g. qSOFA score) within 10 min, initial laboratory tests and presumptive antimicrobial therapy within 1 h, and definitive AST with corresponding antimicrobial amendment within an 8 h window (i.e. the same working day). Truly rapid AST methods therefore must be integrated into the clinical laboratory workflow to ensure maximum impact on clinical outcomes of sepsis, and diagnostic and antimicrobial stewardship. The requisite series of development stages come with a substantial regulatory burden that hinders the translation of innovation into practice. The regulatory hurdles for the adoption of rapid AST technology emphasize technical accuracy, but progress will also rely on the effect rapid AST has on prescribing behaviour by physicians managing the care of patients with sepsis. Early adopters in well-equipped teaching centres in close proximity to large clinical laboratories are likely to be early beneficiaries of rapid AST, while simplified and lower-cost technology is needed to support poorly resourced hospitals in developing countries, with their higher burden of AMR. If we really want the clinical laboratory to deliver a specific, same-day diagnosis underpinned by definitive AST results, we are going to have to advocate more effectively for the clinical benefits of bacterial detection and susceptibility testing at critical decision points in the sepsis management pathway.
-
-
-
Reduced vancomycin susceptibility and increased macrophage survival in Staphylococcus aureus strains sequentially isolated from a bacteraemic patient during a short course of antibiotic therapy
Purpose. The purpose of the present study was to determine the relatedness of Staphylococcus aureus strains successively isolated over a 7-day period from a single bacteraemic patient undergoing antibiotic treatment with vancomycin.
Methods. The S. aureus strains had been isolated and sequenced previously. Antibiotic susceptibility testing, population analysis profiling, and lysostaphin sensitivity and phagocytic killing assays were used to characterize these clonal isolates.
Results. The seven isolates (MEH1–MEH7) were determined to belong to a common multilocus sequence type (MLST) and spa type. Within the third and fifth day of vancomycin treatment, mutations were observed in the vraS and rpsU genes, respectively. Population analysis profiles revealed that the initial isolate (MEH1) was vancomycin-susceptible S. aureus (VSSA), while those isolated on day 7 were mostly heteroresistant vancomycin-intermediate S. aureus (hVISA). Supporting these findings, MEH7 was also observed to be slower in growth, to have an increase in cell wall width and to have reduced sensitivity to lysostaphin, all characteristics of VISA and hVISA strains. In addition, MEH7, although phagocytosed at numbers comparable to the initial isolate, MEH1, survived in higher numbers in RAW 264.7 macrophages. Macrophages infected with MEH7 also released more TNF-α and IFN-1β.
Conclusion. We report an increasing resistance to vancomycin coupled with daptomycin that occurred within approximately 3 days of receiving vancomycin and steadily increased until the infection was cleared with an alternative antibiotic therapy. This study reiterates the need for rapid, efficient and accurate detection of hVISA and VISA infections, especially in high-bacterial load, metastatic infections like bacteraemia.
-
-
-
Rapid phenotypic evolution in multidrug-resistant Klebsiella pneumoniae hospital outbreak strains
Carbapenem-resistant Klebsiella pneumoniae (CRKP) increasingly cause high-mortality outbreaks in hospital settings globally. Following a patient fatality at a hospital in Beijing due to a bla KPC-2-positive CRKP infection, close monitoring was put in place over the course of 14 months to characterize all bla KPC-2-positive CRKP in circulation in the hospital. Whole genome sequences were generated for 100 isolates from bla KPC-2-positive isolates from infected patients, carriers and the hospital environment. Phylogenetic analyses identified a closely related cluster of 82 sequence type 11 (ST11) isolates circulating in the hospital for at least a year prior to admission of the index patient. The majority of inferred transmissions for these isolates involved patients in intensive care units. Whilst the 82 ST11 isolates collected during the surveillance effort all had closely related chromosomes, we observed extensive diversity in their antimicrobial resistance (AMR) phenotypes. We were able to reconstruct the major genomic changes underpinning this variation in AMR profiles, including multiple gains and losses of entire plasmids and recombination events between plasmids, including transposition of bla KPC-2. We also identified specific cases where variation in plasmid copy number correlated with the level of phenotypic resistance to drugs, suggesting that the number of resistance elements carried by a strain may play a role in determining the level of AMR. Our findings highlight the epidemiological value of whole genome sequencing for investigating multi-drug-resistant hospital infections and illustrate that standard typing schemes cannot capture the extraordinarily fast genome evolution of CRKP isolates.
-
-
-
Retrospective whole-genome sequencing analysis distinguished PFGE and drug-resistance-matched retail meat and clinical Salmonella isolates
Non-typhoidal Salmonella is a leading cause of outbreak and sporadic-associated foodborne illnesses in the United States. These infections have been associated with a range of foods, including retail meats. Traditionally, pulsed-field gel electrophoresis (PFGE) and antibiotic susceptibility testing (AST) have been used to facilitate public health investigations of Salmonella infections. However, whole-genome sequencing (WGS) has emerged as an alternative tool that can be routinely implemented. To assess its potential in enhancing integrated surveillance in Pennsylvania, USA, WGS was used to directly compare the genetic characteristics of 7 retail meat and 43 clinical historic Salmonella isolates, subdivided into 3 subsets based on PFGE and AST results, to retrospectively resolve their genetic relatedness and identify antimicrobial resistance (AMR) determinants. Single nucleotide polymorphism (SNP) analyses revealed that the retail meat isolates within S. Heidelberg, S. Typhimurium var. O5- subset 1 and S. Typhimurium var. O5- subset 2 were separated from each primary PFGE pattern-matched clinical isolate by 6–12, 41–96 and 21–81 SNPs, respectively. Fifteen resistance genes were identified across all isolates, including fosA7, a gene only recently found in a limited number of Salmonella and a ≥95 % phenotype to genotype correlation was observed for all tested antimicrobials. Moreover, AMR was primarily plasmid-mediated in S. Heidelberg and S. Typhimurium var. O5- subset 2, whereas AMR was chromosomally carried in S. Typhimurium var. O5- subset 1. Similar plasmids were identified in both the retail meat and clinical isolates. Collectively, these data highlight the utility of WGS in retrospective analyses and enhancing integrated surveillance for Salmonella from multiple sources.
-
-
-
Rapid detection of mcr-1 by recombinase polymerase amplification
More LessPurpose. The plasmid-mediated mcr-1 gene conferring colistin resistance has a strong ability to spread. The objective of this study was to establish a rapid and sensitive recombinase polymerase amplification (RPA) method for plasmid-mediated polymyxin-resistant gene mcr-1 detection.
Methods. Using the reported sequence of the mcr-1 gene, we designed specific primers and probes for RPA. Twenty mcr-1-positive strains carrying IncI2/IncHI2/IncX4/IncP plasmids were screened by RPA in this study. The performance of this new assay was compared to that of PCR, TaqMan probe real-time PCR and SYBR Green-based real-time PCR.
Results. Twenty mcr-1-positive samples and three negative samples were tested by RPA and the positive detection rate for the mcr-1-positive samples was 100 %. The detection limit of RPA was approximately 100 fg. Compared with real-time PCR, the RPA assay was more effective due to shorter reaction times, simpler instruments and higher sensitivity, while it had the same high specificity as real-time PCR.
Conclusion. RPA detection based on the mcr-1 gene was successfully applied in our study. The plasmid-mediated mcr-1 gene conferring colistin drug resistance has a strong ability to spread, suggesting the need to further strengthen the detection of this resistance gene in surveillance. Therefore, we require more sensitive detection methods than have previously been available and the RPA assay established in this study meets these detection needs.
-
-
-
The resistomes of six carbapenem-resistant pathogens – a critical genotype–phenotype analysis
Carbapenem resistance is a rapidly growing threat to our ability to treat refractory bacterial infections. To understand how carbapenem resistance is mobilized and spread between pathogens, it is important to study the genetic context of the underlying resistance mechanisms. In this study, the resistomes of six clinical carbapenem-resistant isolates of five different species – Acinetobacter baumannii, Escherichia coli, two Klebsiella pneumoniae, Proteus mirabilis and Pseudomonas aeruginosa – were characterized using whole genome sequencing. All Enterobacteriaceae isolates and the A. baumannii isolate had acquired a large number of antimicrobial resistance genes (7–18 different genes per isolate), including the following encoding carbapenemases: bla KPC-2, bla OXA-48, bla OXA-72, bla NDM-1, bla NDM-7 and bla VIM-1. In addition, a novel version of bla SHV was discovered. Four new resistance plasmids were identified and their fully assembled sequences were verified using optical DNA mapping. Most of the resistance genes were co-localized on these and other plasmids, suggesting a risk for co-selection. In contrast, five out of six carbapenemase genes were present on plasmids with no or few other resistance genes. The expected level of resistance – based on acquired resistance determinants – was concordant with measured levels in most cases. There were, however, several important discrepancies for four of the six isolates concerning multiple classes of antibiotics. In conclusion, our results further elucidate the diversity of carbapenemases, their mechanisms of horizontal transfer and possible patterns of co-selection. The study also emphasizes the difficulty of using whole genome sequencing for antimicrobial susceptibility testing of pathogens with complex genotypes.
-
-
-
Resistance pattern and distribution of carbapenemase and antiseptic resistance genes among multidrug-resistant Acinetobacter baumannii isolated from intensive care unit patients
More LessPurpose. Nosocomial infections caused by multidrug resistant Acinetobacter baumannii have emerged as a serious problem in healthcare settings worldwide.
Methodology. A total of 100 A. baumannii clinical isolates from immunocompromised patients hospitalized in ICUs in Iran were investigated for antimicrobial susceptibility and the presence of carbapenemase and antiseptic resistance genes.
Results. All isolates were resistant to one or more antibiotics, with the most frequent resistance found against ciprofloxacin and imipenem (100 %) and piperacillin (99 %). The MICs of biocides were determined by the agar dilution method. No apparent resistance to biocides was seen among the 100 A. baumannii isolates. All isolates were effectively inhibited by the user’s defined concentrations of cetrimide, benzalkonium chloride and glutardaldehyde. The intrinsic β-lactamase gene, bla OXA-51-like, was detected in all A. baumannii isolates. Coexistence of bla OXA-51 andbla OXA-23 was encountered in 89 % of isolates. However, genes bla OXA-58, bla SIM and bla IMP were not detected in any isolates. While A. baumannii isolates were sensitive to biocides, they carried qac genes with the qacEΔ1 gene being the most common, at a frequency of 91 %.
Conclusion. Our study revealed the high frequency of multidrug- and carbapenem-resistant isolates of A. baumannii in ICU patients, with a high prevalence of the genes bla OXA-23 and bla OXA-51. However, no apparent biocide resistance was seen in A. baumannii isolates. It appears that appropriate surveillance and control measures are essential to prevent the emergence and transmission of MDR A. baumannii in Iran.
-
-
-
The return of Pfeiffer’s bacillus: Rising incidence of ampicillin resistance in Haemophilus influenzae
More LessHaemophilus influenzae, originally named Pfeiffer’s bacillus after its discoverer Richard Pfeiffer in 1892, was a major risk for global health at the beginning of the 20th century, causing childhood pneumonia and invasive disease as well as otitis media and other upper respiratory tract infections. The implementation of the Hib vaccine, targeting the major capsule type of H. influenzae, almost eradicated the disease in countries that adapted the vaccination scheme. However, a rising number of infections are caused by non-typeable H. influenzae (NTHi), which has no capsule and against which the vaccine therefore provides no protection, as well as other serotypes equally not recognised by the vaccine. The first line of treatment is ampicillin, but there is a steady rise in ampicillin resistance. This is both through acquired as well as intrinsic mechanisms, and is cause for serious concern and the need for more surveillance. There are also increasing reports of new modifications of the intrinsic ampicillin-resistance mechanism leading to resistance against cephalosporins and carbapenems, the last line of well-tolerated drugs, and ampicillin-resistant H. influenzae was included in the recently released priority list of antibiotic-resistant bacteria by the WHO. This review provides an overview of ampicillin resistance prevalence and mechanisms in the context of our current knowledge about population dynamics of H. influenzae.
-
-
-
Relevance of antifungal penetration in biofilm-associated resistance of Candida albicans and non-albicans Candida species
More LessThe role of penetration limitation in Candida biofilm-associated antifungal resistance remains unclear. Most of the previous work has been done on Candida albicans, although non-albicans (NAC) species are also implicated in invasive candidiasis and the biofilm matrix has been shown to vary amongst different species. Only a few studies have evaluated clinical isolates. This study aimed to determine the relevance of penetration limitation in the antifungal resistance of biofilms formed by C. albicans and NAC clinical isolates, using an agar disk diffusion assay. The penetration of posaconazole and amphotericin B through the biofilms was significantly reduced. Fluconazole, voriconazole and caspofungin showed a superior penetration capacity in C. albicans, Candida tropicalis and Candida parapsilosis biofilms, but exhibited inter-species and strain/isolate variation. Candida krusei biofilms were the most resilient to antifungal permeation. All of the antifungal drugs failed to kill the biofilm cells, independent of penetration, suggesting that the other factors contribute markedly to the recalcitrance of the biofilms.
-
-
-
Retrospective study on clonal relationship of multidrug-resistant Klebsiella spp. indicates closed circulation and initiation of clonal divergence
Purpose. Antibiotic resistance patterns often exhibit geographical variations. Periodic analyses of resistance spectra and phylogenetic trends are important guides for facilitating judicious use of therapeutic interventions. The present study retrospectively analysed the infection trends, resistance patterns, and clonal relationships between isolates of Klebsiella spp. from a tertiary care hospital.
Methodology. Bacterial isolates were collected from January 2013 to June 2014 and their resistance profiles were identified using an automated bacterial identification system. A phylogenetic tree was constructed using housekeeping genes with Molecular Evolutionary Genetic Analysis software. The d N/d S ratio was determined by the Synonymous Non-synonymous Analysis Program while polymorphic sites, and the difference per site was calculated using DNA Sequence Polymorphism software. Statistical Package for Social Science software was used to perform all statistical analyses.
Key findings. The results of this study indicated the prevalence of community-acquired urinary tract and lower respiratory tract infections caused by Klebsiella spp. among geriatric patients. The occurrence of new allelic profiles, a low d N/d S ratio and the lack of strong evolutionary descent between isolates indicated that mutations play a major role in the evolution of the organism.
Conclusion. The findings of this study highlight the consequences of antimicrobial agents exerting a silent and strong selective force on the evolution of Klebsiella spp. The expansion of such analyses is of great importance for addressing rapidly emerging antibiotic-resistant opportunistic pathogens.
-
-
-
Restoration of sensitivity of a diverse set of drug-resistant Staphylococcus clinical strains by bactericidal protein P128
Purpose. P128, a phage-derived lysin, exerts antibacterial activity on staphylococci by cleaving the pentaglycine-bridge of peptidoglycan. We sought to determine whether the presence of P128 could re-sensitize drug-resistant bacteria to antibiotics by virtue of its cell wall degrading property.
Methodology. P128 was tested in combination with standard-of-care (SoC) drugs by chequerboard assays on planktonic cells and biofilms of strains individually resistant to these drugs. The bactericidal effect of P128 and drug combinations on planktonic cells and biofilms was measured by c.f.u. reduction assays. A mouse model of MRSA bacteraemia was used to test the efficacy of P128 and oxacillin in combination.
Results. A combination of sub-MIC P128 (0.025–0.20 µg ml−1) and 0.5 µg ml−1 of oxacillin resulted in inhibition of bacterial growth in four MRSA strains. Similar results were seen with all the other drugs tested, wherein sub-MIC of P128 re-sensitized S. aureus and CoNS strains to SoC drugs. The chequerboard assays on strains of S. aureus and CoNS showed that combinations of P128 and antibiotics consistently inhibited bacterial growth on biofilms. Data from scanning electron microscopy and c.f.u. reduction assays on drug-resistant S. aureus and CoNS demonstrated that sub-MICs of P128 and SoC antibiotics could kill biofilm-embedded bacteria. In vivo, a combination of sub-therapeutic doses of P128 and oxacillin could help protect animals from fatal bacteraemia.
Conclusion. The ability of P128 to re-sensitize bacteria to SoC drugs suggests that combinations of P128 and SoC antibiotics can potentially be developed to treat infections caused by drug-resistant strains of staphylococci.
-
-
-
Ram locus is a key regulator to trigger multidrug resistance in Enterobacter aerogenes
More LessPurpose. Several genetic regulators belonging to AraC family are involved in the emergence of MDR isolates of E. aerogenes due to alterations in membrane permeability. Compared with the genetic regulator Mar, RamA may be more relevant towards the emergence of antibiotic resistance.
Methodology. Focusing on the global regulators, Mar and Ram, we compared the amino acid sequences of the Ram repressor in 59 clinical isolates and laboratory strains of E. aerogenes. Sequence types were associated with their corresponding multi-drug resistance phenotypes and membrane protein expression profiles using MIC and immunoblot assays. Quantitative gene expression analysis of the different regulators and their targets (porins and efflux pump components) were performed.
Results. In the majority of the MDR isolates tested, ramR and a region upstream of ramA were mutated but marR or marA were unchanged. Expression and cloning experiments highlighted the involvement of the ram locus in the modification of membrane permeability. Overexpression of RamA lead to decreased porin production and increased expression of efflux pump components, whereas overexpression of RamR had the opposite effects.
Conclusion. Mutations or deletions in ramR, leading to the overexpression of RamA predominated in clinical MDR E. aerogenes isolates and were associated with a higher-level of expression of efflux pump components. It was hypothesised that mutations in ramR, and the self-regulating region proximal to ramA, probably altered the binding properties of the RamR repressor; thereby producing the MDR phenotype. Consequently, mutability of RamR may play a key role in predisposing E. aerogenes towards the emergence of a MDR phenotype.
-