Microbe Profiles

Microbiology is now publishing ‘Microbe Profiles’ – concise, review-type articles that provide overviews of the classification, structure and properties of microbes, written by leading microbiologists. These profiles will provide insights into key microbes within the field.
Collection Contents
41 - 46 of 46 results
-
-
Azotobacter vinelandii: the source of 100 years of discoveries and many more to come
More LessAzotobacter vinelandii has been studied for over 100 years since its discovery as an aerobic nitrogen-fixing organism. This species has proved useful for the study of many different biological systems, including enzyme kinetics and the genetic code. It has been especially useful in working out the structures and mechanisms of different nitrogenase enzymes, how they can function in oxic environments and the interactions of nitrogen fixation with other aspects of metabolism. Interest in studying A. vinelandii has waned in recent decades, but this bacterium still possesses great potential for new discoveries in many fields and commercial applications. The species is of interest for research because of its genetic pliability and natural competence. Its features of particular interest to industry are its ability to produce multiple valuable polymers – bioplastic and alginate in particular; its nitrogen-fixing prowess, which could reduce the need for synthetic fertilizer in agriculture and industrial fermentations, via coculture; its production of potentially useful enzymes and metabolic pathways; and even its biofuel production abilities. This review summarizes the history and potential for future research using this versatile microbe.
-
-
-
Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe
More LessMycobacterium tuberculosis is an expert and deadly pathogen, causing the disease tuberculosis (TB) in humans. It has several notable features: the ability to enter non-replicating states for long periods and cause latent infection; metabolic remodelling during chronic infection; a thick, waxy cell wall; slow growth rate in culture; and intrinsic drug resistance and antibiotic tolerance. As a pathogen, M. tuberculosis has a complex relationship with its host, is able to replicate inside macrophages, and expresses diverse immunomodulatory molecules. M. tuberculosis currently causes over 1.8 million deaths a year, making it the world’s most deadly human pathogen.
-
-
-
Microbe Profile: Candida albicans: a shape-changing, opportunistic pathogenic fungus of humans
More LessCandida albicans is normally a harmless commensal of human beings, but it can cause superficial infections of the mucosa (oral/vaginal thrush) in healthy individuals and (rarely) infections of the skin or nails. It can also become invasive, causing life-threatening systemic and bloodstream infections in immunocompromised hosts, where the mortality rate can be as high as 50 %. It is the most common cause of serious fungal infection and is a common cause of nosocomial infections in hospitals. Some strains have been recognized that are resistant to azoles or echinocandins, which are the first-line antifungals for treatment of C. albicans infections.
-
-
-
Microbe Profile: Akkermansia muciniphila: a conserved intestinal symbiont that acts as the gatekeeper of our mucosa
More LessAkkermansia muciniphila is an abundant inhabitant of the intestinal tract of humans and many other animals. It is the sole intestinal representative of the verrucomicrobia in human stools and depleted in adults suffering from obesity, diabetes and several other diseases. A. muciniphila degrades intestinal mucin into mainly propionic and acetic acid, and lives in symbiosis with its host, marked by signalling to immune and metabolic pathways, priming trophic chains and likely providing competitive exclusion at the host–microbe interface. Since its recent discovery, A. muciniphila has increasingly been studied and recognized as a true intestinal symbiont promoting beneficial interactions in the intestinal tract.
-
-
-
Oenococcus oeni: Queen of the cellar, nightmare of geneticists
More LessOenococcus oeni is a wine-associated lactic acid bacterium (LAB) responsible mostly for wine malolactic fermentation (MLF). This fastidious bacterium (auxotrophic for many amino acids and slow growing) possesses remarkable adaptability to harsh physicochemical conditions and can reprogramme its metabolic pathways to enhance its survival in wine. Thus, O. oeni is an instructive bacterial model for investigating stress response mechanisms in LAB. However, the lack of appropriate techniques to modify the O. oeni genome has hampered molecular studies of this species. The application of recent advances in molecular genetics promises to provide a better understanding of the regulation of stress responses in this species in the future.
-
-
-
Microbe Profile: Escherichia coli O157 : H7 – notorious relative of the microbiologist’s workhorse
More LessEscherichia coli O157 : H7 is a zoonotic diarrhoeal pathogen of worldwide importance. It belongs to a subset of Shiga toxin-producing E. coli that can form attaching and effacing lesions on intestinal epithelia via the action of a type 3 secretion system that injects bacterial effectors into enterocytes. Infections in humans often arise from contaminated food or direct environmental exposure and can involve life-threatening Shiga toxin-dependent sequelae. In the three decades since E. coli O157 : H7 was first recognized intensive research has helped to unravel the basis of pathogenesis, but few effective options for prevention and treatment of infections exist.
-