Microbe Profiles

Microbiology is now publishing ‘Microbe Profiles’ – concise, review-type articles that provide overviews of the classification, structure and properties of microbes, written by leading microbiologists. These profiles will provide insights into key microbes within the field.
Collection Contents
46 results
-
-
Microbe Profile: Salmonella Typhimurium: the master of the art of adaptation
More LessSalmonella Typhimurium is a major Salmonella serovar that is found globally. It is responsible for outbreaks of self-limiting gastroenteritis that are broadly linked to the industrialization of food production. S. Typhimurium is a pathogen with a broad host range and remarkable metabolic versatility. The ∼5 Mb genome includes the pSLT virulence plasmid and has a characteristic prophage repertoire. The major virulence determinants are encoded by a variety of pathogenicity islands. Emerging multidrug-resistant lineages of epidemics of S. Typhimurium are currently causing bloodstream infections in sub-Saharan Africa. The versatility and adaptability of S. Typhimurium pose an important public health challenge.
-
-
-
Microbe Profile: Candida glabrata – a master of deception
More LessCandida glabrata is a fungal microbe associated with multiple vertebrate microbiomes and their terrestrial environments. In humans, the species has emerged as an opportunistic pathogen that now ranks as the second-leading cause of candidiasis in Europe and North America (Beardsley et al. Med Mycol 2024, 62). People at highest risk of infection include the elderly, immunocompromised individuals and/or long-term residents of hospital and assisted-living facilities. C. glabrata is intrinsically drug-resistant, metabolically versatile and able to avoid detection by the immune system. Analyses of its 12.3 Mb genome indicate a stable pangenome Marcet-Houben et al. (BMC Biol 2022, 20) and phylogenetic affinity with Saccharomyces cerevisiae. Recent phylogenetic analyses suggest reclassifying C. glabrata as Nakaseomyces glabratus Lakashima and Sugita (Med Mycol J 2022, 63: 119-132).
-
-
-
Microbe Profile: Pseudonocardia: antibiotics for every niche
Pseudonocardia species comprise a genus of filamentous, sporulating bacteria belonging to the phylum Actinomycetota, formerly Actinobacteria. They are found in marine and freshwater sediments and soils and associated with marine animals, insects, and plants. To date, they have mostly been studied because of their mutually beneficial symbiosis with fungus-growing ants in the tribe Attini. They have also attracted interest due to their biosynthetic capabilities, including the production of variably glycosylated polyenes and other novel antifungal compounds, and for their capacity to grow on a variety of hydrocarbons. The majority of clinically used antibiotics are derived from the specialised metabolites of filamentous actinomycete bacteria and most of these come from the genus Streptomyces. However, in the quest for novel chemistry there is increasing interest in studying other filamentous actinomycete genera, including Pseudonocardia. Here we outline the biological properties, genome size and structure and key features of the genus Pseudonocardia, namely their specialised metabolites and ecological roles.
-
-
-
Microbe Profile: Bacteriophage ϕ6: a model for segmented RNA viruses and the evolutionary consequences of viral ‘sex’
More LessBacteriophage ϕ6 is a segmented dsRNA virus with a lipid envelope, which are unusual traits in bacterial viruses but common in eukaryotic viruses. This uniqueness allowed ϕ6 and its Pseudomonad hosts to serve as a molecular model for RNA genetics, mutation, replication, packaging, and reassortment in both bacterial and eukaryotic viruses. However, an additional uniqueness of ϕ6, created by its high mutation rate, was its use as an experimental system to study key questions such as the evolution of sex (segment reassortment), host–pathogen interactions, mutational load, rates of adaptation, genetic and phenotypic complexity, and game theory.
-
-
-
Microbe Profile: Cellvibrio japonicus: living the sweet life via biomass break-down
More LessCellvibrio japonicus is a saprophytic bacterium proficient at environmental polysaccharide degradation for carbon and energy acquisition. Genetic, enzymatic, and structural characterization of C. japonicus carbohydrate active enzymes, specifically those that degrade plant and animal-derived polysaccharides, demonstrated that this bacterium is a carbohydrate-bioconversion specialist. Structural analyses of these enzymes identified highly specialized carbohydrate binding modules that facilitate activity. Steady progress has been made in developing genetic tools for C. japonicus to better understand the function and regulation of the polysaccharide-degrading enzymes it possesses, as well as to develop it as a biotechnology platform to produce renewable fuels and chemicals.
-
-
-
Microbe Profile: The Lactobacillaceae
More LessThe bacterial family Lactobacillaceae (the lactobacilli) occupy a unique role in microbiology due to their beneficial role in both human cultural history and biology, from the food preservation of hunter gatherers-turned-farmers, through the prevention of scurvy in seafarers exploring new worlds, and the health-promoting properties of species that colonize the human body as well as animals that are important for agriculture and pollination. The almost bewildering phenotypic and genomic complexity of the former genus Lactobacillus was recently reconciled with molecular taxonomy and phylogeny to establish robust genera comprising the Lactobacillaceae , whose main features are summarized in this Microbe Profile.
-
-
-
Microbe Profile: Ehrlichia ruminantium – stealthy as it goes
More LessEhrlichia ruminantium is an obligate intracellular pathogenic bacterium that causes heartwater, a fatal disease of ruminants in tropical areas. Some human cases have also been reported. This globally important pathogen is primarily transmitted by ticks of the Amblyomma genus and threatens American mainland. E. ruminantium replicates within eukaryotic mammal or tick cell is a membrane-bound vacuole, where it undergoes a biphasic developmental growth cycle and differentiates from noninfectious replicative form into infectious elementary bodies. The ability of E. ruminantium to hijack host cellular processes and avoid innate immunity is a fundamental, but not yet fully understood, virulence trait of this stealth pathogen in the genomic era.
-
-
-
Microbe Profile: Ruminococcus gnavus: the yin and yang of human gut symbionts
More LessRuminococcus gnavus is a human gut symbiont, part of the infant and adult gut microbiota and associated with intestinal and extra-intestinal disorders. R. gnavus mechanisms of adaptation to the gut are strain-specific and underpinned by the capacity of R. gnavus strains to utilize mucin and dietary glycans and produce bacteriocins and adhesins. Several potential mediators underpinning the association between R. gnavus strains and diseases have been identified, including the capacity to elicit a pro- or anti-inflammatory host response and modulate host metabolism, secondary bile acids and tryptophan metabolic pathways. Based on increasing evidence from metagenomics studies in humans and functional investigations in vitro and in mouse models, R. gnavus is emerging as a main player in influencing health and disease outcomes from infants to the elderly.
-
-
-
Halobacterium salinarum: Life with more than a grain of salt
More LessHalobacterium salinarum is a halophilic (salt-loving) archaeon that grows in salt concentrations near or at saturation. Although isolated from salted fish a century ago, it was the 1971 discovery of bacteriorhodopsin, the light-driven proton pump, that raised interest in Hbt. salinarum across a range of disciplines, including biophysics, chemistry, molecular evolution and biotechnology. Hbt. salinarum have since contributed to numerous discoveries, such as advances in membrane protein structure determination and the first example of a non-eukaryal glycoprotein. Work on Hbt. salinarum, one of the species used to define Archaea, has also elucidated molecular workings in the third domain. Finally, Hbt. salinarum presents creative solutions to the challenges of life in high salt.
-
-
-
Streptococcus pneumoniae: ‘captain of the men of death’ and financial burden
More LessStreptococcus pneumoniae may inhabit the upper respiratory tract of humans without causing harm but it also causes diseases with high morbidity and mortality. It has excellent adaptive capabilities thanks to its ability to shuffle its genetic content by acquiring and incorporating DNA from other bacteria and is highly competent for genetic transformation. Sugar sensing, cleavage and transport ensure its fitness and survival in the host, and intracellular survival in macrophages has been linked to virulence. The polysaccharide capsule and toxin pneumolysin are the most important virulence determinants. Polysaccharide-based vaccines provide protection against the serotypes represented in vaccine formulations.
-
-
-
Microbe Profile: Alteromonas macleodii − a widespread, fast-responding, ‘interactive’ marine bacterium
More LessAlteromonas macleodii is a marine heterotrophic bacterium with widespread distribution − from temperate to tropical oceans, and from surface to deep waters. Strains of A. macleodii exhibit considerable genomic and metabolic variability, and can grow rapidly on diverse organic compounds. A. macleodii is a model organism for the study of population genomics, physiological adaptations and microbial interactions, with individual genomes encoding diverse phenotypic traits influenced by recombination and horizontal gene transfer.
-
-
-
Microbe Profile: Euglena gracilis: photogenic, flexible and hardy
More LessEuglena gracilis is a unicellular photosynthetic eukaryotic flagellate of the Discoba supergroup, which also encompasses Kinetoplastida and Diplonema. Plastids have green algal origin and are secondarily acquired. The nuclear genome is extremely large and many genes suggest multiple endosymbiotic/gene transfer events, i.e. derivation from prokaryotes of various lineages. E. gracilis is remarkably robust and can proliferate in environments contaminated with heavy metals and acids. Extraordinary metabolic plasticity and a mixotrophic lifestyle confers an ability to thrive in a broad range of environments, as well as facilitating production of many novel metabolites, making Euglena of considerable biotechnological importance.
-
-
-
Microbe Profile: Wigglesworthia glossinidia: the tsetse fly’s significant other
More LessWigglesworthia glossinidia is an obligate, maternally transmitted endosymbiont of tsetse flies. The ancient association between these two organisms accounts for many of their unique physiological adaptations. Similar to other obligate mutualists, Wigglesworthia ’s genome is dramatically reduced in size, yet it has retained the capacity to produce many B-vitamins that are found at inadequate quantities in the fly’s vertebrate blood-specific diet. These Wigglesworthia -derived B-vitamins play essential nutritional roles to maintain tsetse’s physiological homeostasis as well as that of other members of the fly’s microbiota. In addition to its nutritional role, Wigglesworthia contributes towards the development of tsetse’s immune system during the larval period. Tsetse produce amidases that degrade symbiotic peptidoglycans and prevent activation of antimicrobial responses that can damage Wigglesworthia . These amidases in turn exhibit antiparasitic activity and decrease tsetse’s ability to be colonized with parasitic trypanosomes, which reduce host fitness. Thus, the Wigglesworthia symbiosis represents a fine-tuned association in which both partners actively contribute towards achieving optimal fitness outcomes.
-
-
-
Microbe Profile: Pectobacterium atrosepticum: an enemy at the door
More LessPectobacterium atrosepticum is part of a larger family of soft rot bacteria ( Pectobacteriaceae ) that cause disease on a wide range of crops worldwide. They are closely related to members of the Enterobacteriaceae and, as the plant pathogens and plant associated members of the group, form part of a continuum towards opportunistic and more devastating animal and human pathogens. Many of the horizontally acquired islands present in the genome of P. atrosepticum are directly responsible for life on plants. These include genes for a plethora of plant cell wall degrading enzymes, plant toxins, siderophores etc., which are exported by multiple secretion systems under a highly coordinated regulation system.
-
-
-
Microbe Profile: Nitrosopumilus maritimus
More LessNitrosopumilus maritimus is a marine ammonia-oxidizing archaeon with a high affinity for ammonia. It fixes carbon via a modified hydroxypropionate/hydroxybutyrate cycle and shows weak utilization of cyanate as a supplementary energy and nitrogen source. When oxygen is depleted, N. maritimus produces its own oxygen, which may explain its regular occurrence in anoxic waters. Several enzymes of the ammonia oxidation and oxygen production pathways remain to be identified.
-
-
-
Microbe Profile: Gigaspora margarita, a multifaceted arbuscular mycorrhizal fungus
More LessGigaspora margarita is a cosmopolitan arbuscular mycorrhizal fungus, which - as an obligate symbiont- requires being associated to a host plant to accomplish its life cycle. It is characterized by huge white spores, the development of extraradical auxiliary cells, and the lack of intraradical vesicles. Its genome is dominated by transposable elements and is one of the largest fungal genomes so far sequenced. G. margarita has the peculiar feature to host taxonomically different endobacteria in its cytoplasm. The development of a cured line has allowed us to demonstrate how the endobacteria have a positive impact on the fungal physiology and -with a cascade effect- on the mycorrhizal plant.
-
-
-
Microbe Profile: Salinispora tropica: natural products and the evolution of a unique marine bacterium
More LessSalinispora tropica was originally cultured from tropical marine sediments and described as the first obligate marine actinomycete genus. Soon after its discovery, it yielded the potent proteasome inhibitor salinosporamide A, a structurally novel natural product that is currently in phase III clinical trials for the treatment of cancer. If approved, it will be the first natural product derived from a cultured marine microbe to achieve clinical relevance. S. tropica produces many other biologically active natural products, including some linked to chemical defence, thus providing ecological context for their production. However, genomic analyses reveal that most natural product biosynthetic gene clusters remain orphan, suggesting that more compounds await discovery. The abundance of biosynthetic gene clusters in S. tropica supports the concept that the small molecules they encode serve important ecological functions, while their evolutionary histories suggest a potential role in promoting diversification. Better insights into the ecological functions of microbial natural products will help inform future discovery efforts.
-
-
-
Microbe Profile: Legionella pneumophila - a copycat eukaryote
More LessLegionella pneumophila is an environmental bacterium that parasitizes aquatic protozoa and uses the same processes to infect humans. The facultative intracellular pathogen causes a life-threatening pneumonia with possible systemic complications. The co-evolution with protozoa is reflected in an armoury of bacterial effectors, and many of these type IV-secreted proteins have likely been acquired by interdomain horizontal gene transfer (HGT) from hosts. The unique features of L. pneumophila are the largest bacterial effector repertoire known to date, subversion of virtually all eukaryotic signalling pathways and acquisition of eukaryotic enzyme activities used to manipulate the host cell to the pathogen’s advantage.
-
-
-
Microbe Profile: Geobacter metallireducens: a model for novel physiologies of biogeochemical and technological significance
More LessGeobacter metallireducens has served as the initial model for a substantial number of newly recognized microbial physiologies that play an important role in biogeochemical cycling of carbon, metals and nutrients. The strategies used by G. metallireducens for microbial interaction with minerals, contaminants, other microbes and electrodes have led to new technologies for bioremediation, bioenergy conversion and the sustainable production of ‘green’ electronics.
-
-
-
Microbe Profile: Buchnera aphidicola: ancient aphid accomplice and endosymbiont exemplar
More LessBuchnera aphidicola is an obligate endosymbiont of aphids that cannot be cultured outside of hosts. It exists as diverse strains in different aphid species, and phylogenetic reconstructions show that it has been maternally transmitted in aphids for >100 million years. B. aphidicola genomes are highly reduced and show conserved gene order and no gene acquisition, but encoded proteins undergo rapid evolution. Aphids depend on B. aphidicola for biosynthesis of essential amino acids and as an integral part of embryonic development. How B. aphidicola populations are regulated within hosts remains little known.
-
-
-
Microbe Profile: Xylella fastidiosa – a devastating agricultural pathogen with an endophytic lifestyle
More LessXylella fastidiosa is a vector-borne plant vascular pathogen that has caused devastating disease outbreaks in diverse agricultural crops worldwide. A major global quarantine pathogen, X. fastidiosa can infect hundreds of plant species and can be transmitted by many different xylem sap-feeding insects. Several decades of research have revealed a complex lifestyle dependent on adaptation to the xylem and insect environments and interactions with host plant tissues.
-
-
-
Microbe Profile: Aeromonas salmonicida: an opportunistic pathogen with multiple personalities
More LessThe bacterial species Aeromonas salmonicida is a fish pathogen. Feared by fish farmers everywhere on Earth over the past century, this species has turned out to be more diverse than initially suspected. While some psychrophilic subspecies cannot grow at temperatures above 25 °C or 30 °C, other mesophilic strains growing up to 37 °C and above are now characterized. Adding to the surprising diversity of this species, some of the mesophilic strains infect mammals and birds. The remarkable diversity is explained in part by the presence of numerous mobile genetic elements, which sculpt and modify the genome of the various strains of this species.
-
-
-
Microbe Profile: Bdellovibrio bacteriovorus: a specialized bacterial predator of bacteria
More LessBdellovibrio bacteriovorus is an environmentally-ubiquitous bacterium that uses unique adaptations to kill other bacteria. The best-characterized strain, HD100, has a multistage lifestyle, with both a free-living attack phase and an intraperiplasmic growth and division phase inside the prey cell. Advances in understanding the basic biology and regulation of predation processes are paving the way for future potential therapeutic and bioremediation applications of this unusual bacterium.
-
-
-
Microbe Profile: Dictyostelium discoideum: model system for development, chemotaxis and biomedical research
More LessThe social amoeba Dictyostelium discoideum is a versatile organism that is unusual in alternating between single-celled and multi-celled forms. It possesses highly-developed systems for cell motility and chemotaxis, phagocytosis, and developmental pattern formation. As a soil amoeba growing on microorganisms, it is exposed to many potential pathogens; it thus provides fruitful ways of investigating host-pathogen interactions and is emerging as an influential model for biomedical research.
-
-
-
Microbe Profile: Aquifex aeolicus: an extreme heat-loving bacterium that feeds on gases and inorganic chemicals
More LessThe bacterium ‘ Aquifex aeolicus ’ is the model organism for the deeply rooted phylum Aquificae . This ‘water-maker’ is an H2-oxidizing microaerophile that flourishes in extremely hot marine habitats, and it also thrives on the sulphur compounds commonly found in volcanic environments. ‘ A. aeolicus ’ has hyper-stable proteins and a fully sequenced genome, with some of its essential metabolic pathways deciphered (including energy conservation). Many of its proteins have also been characterized (especially structurally), including many of the enzymes involved in replication, transcription, RNA processing and cell envelope biosynthesis. Enzymes that are of promise for biotechnological applications have been widely investigated in this species. ‘ A. aeolicus ’ has also added to our understanding of the origins of life and evolution.
-
-
-
Microbe Profile: Cryptococcus neoformans species complex
More LessCryptococcus neoformans is a lethal fungus disguised in a polysaccharide coat. It can remain dormant in the host for decades prior to reactivation, causing systemic cryptococcosis in humans and other mammals. Cryptococcus deploys a multitude of traits to adapt to and survive within the host, including immunosuppression, an ability to replicate intra- and extra-cellularly in phagocytes, changes in morphology and ploidy, a predilection to infect the CNS, and the capacity to utilize neurotransmitters and unique carbon sources available in the brain. These pathogenic strategies displayed by this fungus might have evolved through its interactions with microbial predators in the environment.
-
-
-
Microbe Profile: Komagataella phaffii: a methanol devouring biotech yeast formerly known as Pichia pastoris
More LessMethylotrophic yeasts of the genus Komagataella are abundantly found in tree exudates. Their ability to utilize methanol as carbon and energy source relies on an assimilation pathway localized in largely expanded peroxisomes, and a cytosolic methanol dissimilation pathway. Other substrates like glucose or glycerol are readily utilized as well. Komagataella yeasts usually grow as haploid cells and are secondary homothallic as they can switch mating type. Upon mating diploid cells sporulate readily, forming asci with four haploid spores. Their ability to secrete high amounts of heterologous proteins made them interesting for biotechnology, which expands today also to other products of primary and secondary metabolism.
-
-
-
Microbe Profile: Bacillus subtilis: model organism for cellular development, and industrial workhorse
More LessBacillus subtilis is the best studied model organism of the Gram-positive lineage. It is naturally transformable and has an extremely powerful genetic toolbox. It is fast growing and easy to cultivate. It is an important industrial organism, being proficient at secreting proteins and making small fine chemicals, as well as acting as a plant growth promoter. It has been an important model system for studying biofilms. Finally, it makes endospores, which have provided an exceptionally fruitful system for studying various central problems of cellular development, including the generation of asymmetry, cell fate determination and morphogenesis.
-
-
-
Microbe Profile: Campylobacter jejuni – survival instincts
More LessCampylobacter jejuni is considered to be the most common bacterial cause of human gastroenteritis worldwide. C. jejuni can cause bloody diarrhoea, fever and abdominal pain in humans along with post-infectious sequelae such as Guillain-Barré syndrome (a paralytic autoimmune complication). C. jejuni infections can be fatal, particularly among young children. C. jejuni are distributed in most warm-blooded animals, and therefore the main route of transmission is generally foodborne, via the consumption and handling of meat products (particularly poultry). C. jejuni is microaerophilic and oxygen-sensitive, although it appears to be omnipresent in the environment, one of the many contradictions of Campylobacter .
-
-
-
Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat
More LessPseudomonas aeruginosa is a Gram-negative opportunistic pathogen and a model bacterium for studying virulence and bacterial social traits. While it can be isolated in low numbers from a wide variety of environments including soil and water, it can readily be found in almost any human/animal-impacted environment. It is a major cause of illness and death in humans with immunosuppressive and chronic conditions, and infections in these patients are difficult to treat due to a number of antibiotic resistance mechanisms and the organism’s propensity to form multicellular biofilms.
-
-
-
Microbe Profile: Thermococcus kodakarensis: the model hyperthermophilic archaeon
More LessThermococcus kodakarensis is a hyperthermophilic Euryarchaeon that grows well under laboratory conditions and, being naturally competent for genetic transformation, it has become a widely studied experimental model species. With the genome sequence available since 2004, combining genetic, enzymological and structural biochemical approaches has revealed previously unknown and unanticipated features of archaeal molecular biology and metabolism. T. kodakarensis DNA polymerase is already commercialized and with the details of metabolism and hydrogenase available, generating H2 from biopolymers solubilized at high temperatures, most notably chitin, now seems a very attractive possibility as a renewable energy bioprocess.
-
-
-
Microbe Profile: Streptomyces coelicolor: a burlesque of pigments and phenotypes
More LessThe streptomycetes are soil-dwelling bacteria that are found in soil everywhere on Earth: the molecule geosmin, which they produce as part of their life cycle, is what gives soil its familiar ‘earthy’ smell. The species is best known for the production of biologically active small molecules called ‘natural products’. These molecules are the source of most of our antibiotics and anti-fungals, as well as many other drugs. The streptomycetes have a filamentous form rather than the more familiar rod-shaped spirochete and coccoid forms. They exhibit a complex life cycle and sporulation mechanism involving several differentiated cell types, each having specific roles in the colony life history. Streptomyces coelicolor is an important model system for this genus – research on this bacterium has provided foundational information for all of these fascinating processes.
-
-
-
Microbe Profile: Listeria monocytogenes: a paradigm among intracellular bacterial pathogens
More LessListeria monocytogenes is a food-borne bacterial pathogen that is responsible for listeriosis, a disease characterized by occasional febrile gastroenteritis in immunocompetent individuals, abortions in pregnant women, meningitis in the newborn and fatal bacteraemia in immunocompromised individuals or the elderly. The ability of L. monocytogenes to produce disease is intimately associated with its potential to traverse several human barriers (including the intestinal, placental and blood/brain barriers), to promote its internalization within diverse populations of epithelial cells and to proliferate in the intra-ic environment while escaping host immune responses. L. monocytogenes is often regarded as a paradigm for intracellular parasitism.
-
-
-
Cryptosporidium
More LessThe protozoan Cryptosporidium is notorious for its resistance to chlorine disinfection, a mainstay of water treatment. Human infections, mainly of the small intestine, arise from consumption of faecally contaminated food or water, environmental exposure, and person-to-person or animal-to-person spread. Acute gastrointestinal symptoms can be prolonged but are usually self-limiting. Problems arise with immune-deficient, including malnourished, people including chronic diarrhoea, hepato-biliary tree and extra-gastrointestinal site infection, and few options for treatment or prevention exist. Although genomics has enabled refined classification, identification of chemotherapeutic targets and vaccine candidates, and putative factors for host adaption and pathogenesis, their confirmation has been hampered by a lack of biological tools.
-
-
-
Pseudomonas syringae: enterprising epiphyte and stealthy parasite
More LessPseudomonas syringae is best known as a plant pathogenic bacterium that causes diseases in a multitude of hosts, and it has been used as a model organism to understand the biology of plant disease. Pathogenic and non-pathogenic isolates of P. syringae are also commonly found living as epiphytes and in the wider environment, including water sources such as rivers and precipitation. Ice-nucleating strains of P. syringae are associated with frost damage to crops. The genomes of numerous strains of P. syringae have been sequenced and molecular genetic studies have elucidated many aspects of this pathogen’s interaction with its host plants.
-
-
-
Coxiella burnetii: A Pathogenic Intracellular Acidophile
More LessCoxiella burnetii is an obligate intracellular pathogen that causes acute and chronic Q fever. C. burnetii grows within a eukaryotic host cell in a vacuole highly similar to a phagolysosome. Found worldwide, this environmentally stable pathogen is maintained in nature via chronic infection of ruminants. Aerosol-mediated infection of humans results in infection and usurpation of alveolar macrophages through mechanisms using a bacterial Type 4B Secretion System and secreted effector proteins. Advances in axenic culture and genetic systems are changing our understanding of the pathogen’s physiology and intimate molecular manipulations of host cells during infection.
-
-
-
Microbe Profile: Wolbachia: a sex selector, a viral protector and a target to treat filarial nematodes
More LessWolbachia is the most widespread genus of endosymbiotic bacteria in the animal world, infecting a diverse range of arthropods and nematodes. A broad spectrum of associations from parasitism to mutualism occur, with a tendency to drive reproductive manipulation or influence host fecundity to spread infection through host populations. These varied effects of Wolbachia are exploited for public health benefits. Notably, the protection of insect hosts from viruses is being tested as a potential control strategy for human arboviruses, and the mutualistic relationship with filarial nematodes makes Wolbachia a target for antibiotic therapy of human and veterinary nematode diseases.
-
-
-
Microbe Profile: Saccharomyces eubayanus, the missing link to lager beer yeasts
More LessSaccharomyces eubayanus was described less than 10 years ago and its discovery settled the long-lasting debate on the origins of the cold-tolerant yeast responsible for lager beer fermentation. The largest share of the genetic diversity of S. eubayanus is located in South America, and strains of this species have not yet been found in Europe. One or more hybridization events between S. eubayanus and S. cerevisiae ale beer strains gave rise to S. pastorianus, the allopolyploid yeasts responsible for lager beer production worldwide. The identification of the missing progenitor of lager yeast opened new avenues for brewing yeast research. It allowed not only the selective breeding of new lager strains, but revealed also a wild yeast with interesting brewing abilities so that a beer solely fermented by S. eubayanus is currently on the market.
-
-
-
Microbe Profile: Aspergillus fumigatus: a saprotrophic and opportunistic fungal pathogen
More LessAspergillus fumigatus is a saprotrophic fungus that continuously disseminates spores (conidia) into the environment. It is also the most common and opportunistic aerial fungal pathogen, causing allergic and chronic lung pathologies including the fatal invasive aspergillosis in immunocompromised patients. The pathobiology of aspergillosis is complex and depends on the competence of the host immune system. Moreover, A. fumigatus has become a model to study unique features of fungi. This includes the fungal cell wall, which not only acts as a rigid skeleton for protection against hostile environments but also plays significant roles during infection by manipulating the host immune response.
-
-
-
Microbe Profile: Corynebacterium diphtheriae – an old foe always ready to seize opportunity
More LessCorynebacterium diphtheriae is a globally important Gram-positive aerobic Actinobacterium capable of causing the toxin-mediated disease, diphtheria. Diphtheria was a major cause of childhood mortality prior to the introduction of the toxoid vaccine, yet it is capable of rapid resurgence following the breakdown of healthcare provision, vaccination or displacement of people. The mechanism and treatment of toxin-mediated disease is well understood, however there are key gaps in our knowledge on the basic biology of C. diphtheriae particularly relating to host colonisation, the nature of asymptomatic carriage, population genomics and host adaptation.
-
-
-
Azotobacter vinelandii: the source of 100 years of discoveries and many more to come
More LessAzotobacter vinelandii has been studied for over 100 years since its discovery as an aerobic nitrogen-fixing organism. This species has proved useful for the study of many different biological systems, including enzyme kinetics and the genetic code. It has been especially useful in working out the structures and mechanisms of different nitrogenase enzymes, how they can function in oxic environments and the interactions of nitrogen fixation with other aspects of metabolism. Interest in studying A. vinelandii has waned in recent decades, but this bacterium still possesses great potential for new discoveries in many fields and commercial applications. The species is of interest for research because of its genetic pliability and natural competence. Its features of particular interest to industry are its ability to produce multiple valuable polymers – bioplastic and alginate in particular; its nitrogen-fixing prowess, which could reduce the need for synthetic fertilizer in agriculture and industrial fermentations, via coculture; its production of potentially useful enzymes and metabolic pathways; and even its biofuel production abilities. This review summarizes the history and potential for future research using this versatile microbe.
-
-
-
Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe
More LessMycobacterium tuberculosis is an expert and deadly pathogen, causing the disease tuberculosis (TB) in humans. It has several notable features: the ability to enter non-replicating states for long periods and cause latent infection; metabolic remodelling during chronic infection; a thick, waxy cell wall; slow growth rate in culture; and intrinsic drug resistance and antibiotic tolerance. As a pathogen, M. tuberculosis has a complex relationship with its host, is able to replicate inside macrophages, and expresses diverse immunomodulatory molecules. M. tuberculosis currently causes over 1.8 million deaths a year, making it the world’s most deadly human pathogen.
-
-
-
Microbe Profile: Candida albicans: a shape-changing, opportunistic pathogenic fungus of humans
More LessCandida albicans is normally a harmless commensal of human beings, but it can cause superficial infections of the mucosa (oral/vaginal thrush) in healthy individuals and (rarely) infections of the skin or nails. It can also become invasive, causing life-threatening systemic and bloodstream infections in immunocompromised hosts, where the mortality rate can be as high as 50 %. It is the most common cause of serious fungal infection and is a common cause of nosocomial infections in hospitals. Some strains have been recognized that are resistant to azoles or echinocandins, which are the first-line antifungals for treatment of C. albicans infections.
-
-
-
Microbe Profile: Akkermansia muciniphila: a conserved intestinal symbiont that acts as the gatekeeper of our mucosa
More LessAkkermansia muciniphila is an abundant inhabitant of the intestinal tract of humans and many other animals. It is the sole intestinal representative of the verrucomicrobia in human stools and depleted in adults suffering from obesity, diabetes and several other diseases. A. muciniphila degrades intestinal mucin into mainly propionic and acetic acid, and lives in symbiosis with its host, marked by signalling to immune and metabolic pathways, priming trophic chains and likely providing competitive exclusion at the host–microbe interface. Since its recent discovery, A. muciniphila has increasingly been studied and recognized as a true intestinal symbiont promoting beneficial interactions in the intestinal tract.
-
-
-
Oenococcus oeni: Queen of the cellar, nightmare of geneticists
More LessOenococcus oeni is a wine-associated lactic acid bacterium (LAB) responsible mostly for wine malolactic fermentation (MLF). This fastidious bacterium (auxotrophic for many amino acids and slow growing) possesses remarkable adaptability to harsh physicochemical conditions and can reprogramme its metabolic pathways to enhance its survival in wine. Thus, O. oeni is an instructive bacterial model for investigating stress response mechanisms in LAB. However, the lack of appropriate techniques to modify the O. oeni genome has hampered molecular studies of this species. The application of recent advances in molecular genetics promises to provide a better understanding of the regulation of stress responses in this species in the future.
-
-
-
Microbe Profile: Escherichia coli O157 : H7 – notorious relative of the microbiologist’s workhorse
More LessEscherichia coli O157 : H7 is a zoonotic diarrhoeal pathogen of worldwide importance. It belongs to a subset of Shiga toxin-producing E. coli that can form attaching and effacing lesions on intestinal epithelia via the action of a type 3 secretion system that injects bacterial effectors into enterocytes. Infections in humans often arise from contaminated food or direct environmental exposure and can involve life-threatening Shiga toxin-dependent sequelae. In the three decades since E. coli O157 : H7 was first recognized intensive research has helped to unravel the basis of pathogenesis, but few effective options for prevention and treatment of infections exist.
-