Microbe Profiles

Microbiology is now publishing ‘Microbe Profiles’ – concise, review-type articles that provide overviews of the classification, structure and properties of microbes, written by leading microbiologists. These profiles will provide insights into key microbes within the field.
Collection Contents
-
-
Microbe Profile: Salmonella Typhimurium: the master of the art of adaptation
More LessSalmonella Typhimurium is a major Salmonella serovar that is found globally. It is responsible for outbreaks of self-limiting gastroenteritis that are broadly linked to the industrialization of food production. S. Typhimurium is a pathogen with a broad host range and remarkable metabolic versatility. The ∼5 Mb genome includes the pSLT virulence plasmid and has a characteristic prophage repertoire. The major virulence determinants are encoded by a variety of pathogenicity islands. Emerging multidrug-resistant lineages of epidemics of S. Typhimurium are currently causing bloodstream infections in sub-Saharan Africa. The versatility and adaptability of S. Typhimurium pose an important public health challenge.
-
-
-
Microbe Profile: Candida glabrata – a master of deception
More LessCandida glabrata is a fungal microbe associated with multiple vertebrate microbiomes and their terrestrial environments. In humans, the species has emerged as an opportunistic pathogen that now ranks as the second-leading cause of candidiasis in Europe and North America (Beardsley et al. Med Mycol 2024, 62). People at highest risk of infection include the elderly, immunocompromised individuals and/or long-term residents of hospital and assisted-living facilities. C. glabrata is intrinsically drug-resistant, metabolically versatile and able to avoid detection by the immune system. Analyses of its 12.3 Mb genome indicate a stable pangenome Marcet-Houben et al. (BMC Biol 2022, 20) and phylogenetic affinity with Saccharomyces cerevisiae. Recent phylogenetic analyses suggest reclassifying C. glabrata as Nakaseomyces glabratus Lakashima and Sugita (Med Mycol J 2022, 63: 119-132).
-
-
-
Microbe Profile: Pseudonocardia: antibiotics for every niche
Pseudonocardia species comprise a genus of filamentous, sporulating bacteria belonging to the phylum Actinomycetota, formerly Actinobacteria. They are found in marine and freshwater sediments and soils and associated with marine animals, insects, and plants. To date, they have mostly been studied because of their mutually beneficial symbiosis with fungus-growing ants in the tribe Attini. They have also attracted interest due to their biosynthetic capabilities, including the production of variably glycosylated polyenes and other novel antifungal compounds, and for their capacity to grow on a variety of hydrocarbons. The majority of clinically used antibiotics are derived from the specialised metabolites of filamentous actinomycete bacteria and most of these come from the genus Streptomyces. However, in the quest for novel chemistry there is increasing interest in studying other filamentous actinomycete genera, including Pseudonocardia. Here we outline the biological properties, genome size and structure and key features of the genus Pseudonocardia, namely their specialised metabolites and ecological roles.
-
-
-
Microbe Profile: Bacteriophage ϕ6: a model for segmented RNA viruses and the evolutionary consequences of viral ‘sex’
More LessBacteriophage ϕ6 is a segmented dsRNA virus with a lipid envelope, which are unusual traits in bacterial viruses but common in eukaryotic viruses. This uniqueness allowed ϕ6 and its Pseudomonad hosts to serve as a molecular model for RNA genetics, mutation, replication, packaging, and reassortment in both bacterial and eukaryotic viruses. However, an additional uniqueness of ϕ6, created by its high mutation rate, was its use as an experimental system to study key questions such as the evolution of sex (segment reassortment), host–pathogen interactions, mutational load, rates of adaptation, genetic and phenotypic complexity, and game theory.
-
-
-
Microbe Profile: Cellvibrio japonicus: living the sweet life via biomass break-down
More LessCellvibrio japonicus is a saprophytic bacterium proficient at environmental polysaccharide degradation for carbon and energy acquisition. Genetic, enzymatic, and structural characterization of C. japonicus carbohydrate active enzymes, specifically those that degrade plant and animal-derived polysaccharides, demonstrated that this bacterium is a carbohydrate-bioconversion specialist. Structural analyses of these enzymes identified highly specialized carbohydrate binding modules that facilitate activity. Steady progress has been made in developing genetic tools for C. japonicus to better understand the function and regulation of the polysaccharide-degrading enzymes it possesses, as well as to develop it as a biotechnology platform to produce renewable fuels and chemicals.
-
-
-
Microbe Profile: The Lactobacillaceae
More LessThe bacterial family Lactobacillaceae (the lactobacilli) occupy a unique role in microbiology due to their beneficial role in both human cultural history and biology, from the food preservation of hunter gatherers-turned-farmers, through the prevention of scurvy in seafarers exploring new worlds, and the health-promoting properties of species that colonize the human body as well as animals that are important for agriculture and pollination. The almost bewildering phenotypic and genomic complexity of the former genus Lactobacillus was recently reconciled with molecular taxonomy and phylogeny to establish robust genera comprising the Lactobacillaceae , whose main features are summarized in this Microbe Profile.
-
-
-
Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe
More LessMycobacterium tuberculosis is an expert and deadly pathogen, causing the disease tuberculosis (TB) in humans. It has several notable features: the ability to enter non-replicating states for long periods and cause latent infection; metabolic remodelling during chronic infection; a thick, waxy cell wall; slow growth rate in culture; and intrinsic drug resistance and antibiotic tolerance. As a pathogen, M. tuberculosis has a complex relationship with its host, is able to replicate inside macrophages, and expresses diverse immunomodulatory molecules. M. tuberculosis currently causes over 1.8 million deaths a year, making it the world’s most deadly human pathogen.
-