Metals in Microbiology

Metals catalyse almost a half of all microbial reactions and yet can poison microorganisms. Metal handling systems - that maintain metal homeostasis - are thus vital to sustain microbial life. For microbial pathogens, the challenge of metal homeostasis is exacerbated by host immune defences that restrict metal access and that exploit the microbicidal activity of metals. There are opportunities to produce new antimicrobials that subvert microbial metal-handling systems or that use metals directly or combined with other compounds. The prevalence of metalloenzymes also means that engineering the metal-supply in microorganisms is highly relevant to industrial biotechnological processes, with metalloproteins contributing to bioenergy production, bioremediation, biomedicine, synthesis of high value industrial feedstocks and more.
Guest-edited by Dr Jennifer Cavet (University of Manchester) and Dr Karrera Djoko (Durham University), this collection of keynote research articles will highlight research on metal-microbe interactions, bringing together advances in our understanding of how microbes handle metals, the utilization of metals in proteins and the importance of metal handling systems in host-pathogen interactions. It will also include research that exploits these systems in industrial processes, the development of metal-related antimicrobials and in metal bioremediation and biorecovery.
Image credit: Jin Hong
Collection Contents
1 - 20 of 40 results
-
-
Role of horizontally transferred copper resistance genes in Staphylococcus aureus and Listeria monocytogenes
Bacteria have evolved mechanisms which enable them to control intracellular concentrations of metals. In the case of transition metals, such as copper, iron and zinc, bacteria must ensure enough is available as a cofactor for enzymes whilst at the same time preventing the accumulation of excess concentrations, which can be toxic. Interestingly, metal homeostasis and resistance systems have been found to play important roles in virulence. This review will discuss the copper homeostasis and resistance systems in Staphylococcus aureus and Listeria monocytogenes and the implications that acquisition of additional copper resistance genes may have in these pathogens.
-
-
-
Application of fungal copper carbonate nanoparticles as environmental catalysts: organic dye degradation and chromate removal
More LessBiomineralization is a ubiquitous process in organisms to produce biominerals, and a wide range of metallic nanoscale minerals can be produced as a consequence of the interactions of micro-organisms with metals and minerals. Copper-bearing nanoparticles produced by biomineralization mechanisms have a variety of applications due to their remarkable catalytic efficiency, antibacterial properties and low production cost. In this study, we demonstrate the biotechnological potential of copper carbonate nanoparticles (CuNPs) synthesized using a carbonate-enriched biomass-free ureolytic fungal spent culture supernatant. The efficiency of the CuNPs in pollutant remediation was investigated using a dye (methyl red) and a toxic metal oxyanion, chromate Cr(VI). The biogenic CuNPs exhibited excellent catalytic properties in a Fenton-like reaction to degrade methyl red, and efficiently removed Cr(VI) from solution due to both adsorption and reduction of Cr(VI). X-ray photoelectron spectroscopy (XPS) identified the oxidation of reducing Cu species of the CuNPs during the reaction with Cr(VI). This work shows that urease-positive fungi can play an important role not only in the biorecovery of metals through the production of insoluble nanoscale carbonates, but also provides novel and simple strategies for the preparation of sustainable nanomineral products with catalytic properties applicable to the bioremediation of organic and metallic pollutants, solely and in mixtures.
-
-
-
Orchestrating a heist: uptake and storage of metals by apicomplexan parasites
More LessThe acquisition and storage of metals has been a preoccupation of life for millennia. Transition metals, in particular iron, copper and zinc, have vital roles within cells. However, metals also make dangerous cargos; inappropriate uptake or storage of transition metals leads to cell death. This paradox has led to cells developing elegant and frequently redundant mechanisms for fine-tuning local metal concentrations. In the context of infection, pathogens must overcome further hurdles, as hosts act to weaponize metal availability to prevent pathogen colonization and spread. Here, we detail the methods used by the Apicomplexa, a large family of eukaryotic parasites, to obtain and store essential metals.
-
-
-
At the metal–metabolite interface in Aspergillus fumigatus: towards untangling the intersecting roles of zinc and gliotoxin
Cryptic links between apparently unrelated metabolic systems represent potential new drug targets in fungi. Evidence of such a link between zinc and gliotoxin (GT) biosynthesis in Aspergillus fumigatus is emerging. Expression of some genes of the GT biosynthetic gene cluster gli is influenced by the zinc-dependent transcription activator ZafA, zinc may relieve GT-mediated fungal growth inhibition and, surprisingly, GT biosynthesis is influenced by zinc availability. In A. fumigatus, dithiol gliotoxin (DTG), which has zinc-chelating properties, is converted to either GT or bis-dethiobis(methylthio)gliotoxin (BmGT) by oxidoreductase GliT and methyltransferase GtmA, respectively. A double deletion mutant lacking both GliT and GtmA was previously observed to be hypersensitive to exogenous GT exposure. Here we show that compared to wild-type exposure, exogenous GT and the zinc chelator N,N,N′,N′-tetrakis(2-pyridinylmethyl)−1,2-ethanediamine (TPEN) inhibit A. fumigatus ΔgliTΔgtmA growth, specifically under zinc-limiting conditions, which can be reversed by zinc addition. While GT biosynthesis is evident in zinc-depleted medium, addition of zinc (1 µM) suppressed GT and activated BmGT production. In addition, secretion of the unferrated siderophore, triacetylfusarinine C (TAFC), was evident by A. fumigatus wild-type (at >5 µM zinc) and ΔgtmA (at >1 µM zinc) in a low-iron medium. TAFC secretion suggests that differential zinc-sensing between both strains may influence fungal Fe3+ requirement. Label-free quantitative proteomic analysis of both strains under equivalent differential zinc conditions revealed protein abundance alterations in accordance with altered metabolomic observations, in addition to increased GliT abundance in ΔgtmA at 5 µM zinc, compared to wild-type, supporting a zinc-sensing deficiency in the mutant strain. The relative abundance of a range of oxidoreductase- and secondary metabolism-related enzymes was also evident in a zinc- and strain-dependent manner. Overall, we elaborate new linkages between zinc availability, natural product biosynthesis and oxidative stress homeostasis in A. fumigatus.
-
-
-
Key carboxylate residues for iron transit through the prokaryotic ferritin SynFtn
More LessFerritins are proteins forming 24meric rhombic dodecahedral cages that play a key role in iron storage and detoxification in all cell types. Their function requires the transport of Fe2+ from the exterior of the protein to buried di-iron catalytic sites, known as ferroxidase centres, where Fe2+ is oxidized to form Fe3+-oxo precursors of the ferritin mineral core. The route of iron transit through animal ferritins is well understood: the Fe2+ substrate enters the protein via channels at the threefold axes and conserved carboxylates on the inner surface of the protein cage have been shown to contribute to transient binding sites that guide Fe2+ to the ferroxidase centres. The routes of iron transit through prokaryotic ferritins are less well studied but for some, at least, there is evidence that channels at the twofold axes are the major route for Fe2+ uptake. SynFtn, isolated from the cyanobacterium Synechococcus CC9311, is an atypical prokaryotic ferritin that was recently shown to take up Fe2+ via its threefold channels. However, the transfer site carboxylate residues conserved in animal ferritins are absent, meaning that the route taken from the site of iron entry into SynFtn to the catalytic centre is yet to be defined. Here, we report the use of a combination of site-directed mutagenesis, absorbance-monitored activity assays and protein crystallography to probe the effect of substitution of two residues potentially involved in this pathway. Both Glu141 and Asp65 play a role in guiding the Fe2+ substrate to the ferroxidase centre. In the absence of Asp65, routes for Fe2+ to, and Fe3+ exit from, the ferroxidase centre are affected resulting in inefficient formation of the mineral core. These observations further define the iron transit route in what may be the first characterized example of a new class of ferritins peculiar to cyanobacteria.
-
-
-
Iron influences the expression of colonization factor CS6 of enterotoxigenic Escherichia coli
More LessEnterotoxigenic Escherichia coli (ETEC) is a major pathogen of acute watery diarrhoea. The pathogenicity of ETEC is linked to adherence to the small intestine by colonization factors (CFs) and secretion of heat-labile enterotoxin (LT) and/or heat-stable enterotoxin (ST). CS6 is one of the most common CFs in our region and worldwide. Iron availability functions as an environmental cue for enteropathogenic bacteria, signalling arrival within the human host. Therefore, iron could modify the expression of CS6 in the intestine. The objective of this study was to determine the effect of iron availability on CS6 expression in ETEC. This would help in understanding the importance of iron during ETEC pathogenesis. ETEC strain harbouring CS6 was cultured under increasing concentrations of iron salt to assess the effect on CS6 RNA expression by quantitative RT-PCR, protein expression by ELISA, promoter activity by β-galactosidase activity, and epithelial adhesion on HT-29 cells. RNA expression of CS6 was maximum in presence of 0.2 mM iron (II) salt. The expression increased by 50-fold, which also reduced under iron-chelation conditions and an increased iron concentration of 0.4 mM or more. The surface expression of CS6 also increased by 60-fold in presence of 0.2 mM iron. The upregulation of CS6 promoter activity by 25-fold under this experimental condition was in accordance with the induction of CS6 RNA and protein. This increased CS6 expression was independent of ETEC strains. Bacterial adhesion to HT-29 epithelial cells was also enhanced by five-fold in the presence of 0.2 mM iron salt. These findings suggest that CS6 expression is dependent on iron concentration. However, with further increases in iron concentration beyond 0.2 mM CS6 expression is decreased, suggesting that there might be a strong regulatory mechanism for CS6 expression under different iron concentrations.
-
-
-
Idification and structural characterisation of a catecholate-type siderophore produced by Stenotrophomonas maltophilia K279a
More LessSiderophores are produced by several bacteria that utilise iron in various environments. Elucidating the structure of a specific siderophore may have valuable applications in drug development. Stenotrophomonas maltophilia , a Gram-negative bacterium that inhabits a wide range of environments and can cause pneumonia, produces siderophores. However, the structure was unknown, and therefore, in this study, we aimed to elucidate it. We purified siderophores from cultures of S. maltophilia K279a using preparative reversed-phase HPLC. The structure was analysed through LC-MS and 1H and 13C NMR. The results demonstrated that S. maltophilia K279a produces 2,3-dihydroxybenzoylserine (DHBS), a monomer unit of enterobactin. We suggested the uptake of Iron(III) by the DHBS complex. DHBS production by S. maltophilia K279a could be attributed to an incomplete enterobactin pathway. Drugs targeting DHBS synthesis could prevent S. maltophilia infection.
-
-
-
Interplay between central carbon metabolism and metal homeostasis in mycobacteria and other human pathogens
More LessBacterial nutrition is a fundamental aspect of pathogenesis. While the host environment is in principle nutrient-rich, hosts have evolved strategies to interfere with nutrient acquisition by pathogens. In turn, pathogens have developed mechanisms to circumvent these restrictions. Changing the availability of bioavailable metal ions is a common strategy used by hosts to limit bacterial replication. Macrophages and neutrophils withhold iron, manganese, and zinc ions to starve bacteria. Alternatively, they can release manganese, zinc, and copper ions to intoxicate microorganisms. Metals are essential micronutrients and participate in catalysis, macromolecular structure, and signalling. This review summarises our current understanding of how central carbon metabolism in pathogens adapts to local fluctuations in free metal ion concentrations. We focus on the transcriptomics and proteomics data produced in studies of the iron-sparing response in Mycobacterium tuberculosis , the etiological agent of tuberculosis, and consequently generate a hypothetical model linking trehalose accumulation, succinate secretion and substrate-level phosphorylation in iron-starved M. tuberculosis . This review also aims to highlight a large gap in our knowledge of pathogen physiology: the interplay between metal homeostasis and central carbon metabolism, two cellular processes which are usually studied separately. Integrating metabolism and metal biology would allow the discovery of new weaknesses in bacterial physiology, leading to the development of novel and improved antibacterial therapies.
-
-
-
Investigating zinc toxicity responses in marine Prochlorococcus and Synechococcus
More LessMarine plastic pollution is a growing concern worldwide and has the potential to impact marine life via leaching of chemicals, with zinc (Zn), a common plastic additive, observed at particularly high levels in plastic leachates in previous studies. At this time, however, little is known regarding how elevated Zn affects key groups of marine primary producers. Marine cyanobacterial genera Prochlorococcus and Synechococcus are considered to be some of the most abundant oxygenic phototrophs on earth, and together contribute significantly to oceanic primary productivity. Here we set out to investigate how two Prochlorococcus (MIT9312 and NATL2A) and two Synechococcus (CC9311 and WH8102) strains, representative of diverse ecological niches, respond to exposure to high Zn concentrations. The two genera showed differences in the timing and degree of growth and physiological responses to elevated Zn levels, with Prochlorococcus strains showing declines in their growth rate and photophysiology following exposure to 27 µg l−1 Zn, while Synechococcus CC9311 and WH8102 growth rates declined significantly on exposure to 52 and 152 µg l−1 Zn, respectively. Differences were also observed in each strain’s capacity to maintain cell wall integrity on exposure to different levels of Zn. Our results indicate that excess Zn has the potential to pose a challenge to some marine picocyanobacteria and highlights the need to better understand how different marine Prochlorococcus and Synechococcus strains may respond to increasing concentrations of Zn in some marine regions.
-
-
-
Haem toxicity provides a competitive advantage to the clinically relevant Staphylococcus aureus small colony variant phenotype
Microorganisms encounter toxicities inside the host. Many pathogens exist as subpopulations to maximize survivability. Subpopulations of Staphylococcus aureus include antibiotic-tolerant small colony variants (SCVs). These mutants often emerge following antibiotic treatment but can be present in infections prior to antibiotic exposure. We hypothesize that haem toxicity in the host selects for respiration-deficient S. aureus SCVs in the absence of antibiotics. We demonstrate that some but not all respiration-deficient SCV phenotypes are more protective than the haem detoxification system against transient haem exposure, indicating that haem toxicity in the host may contribute to the dominance of menaquinone-deficient and haem-deficient SCVs prior to antibiotic treatment.
-
-
-
A novel hemA mutation is responsible for a small-colony-variant phenotype in Escherichia coli
More LessWe identified a small colony variant (SCV) of an amoxicillin/clavulanic acid-resistant derivative of a clinical isolate of Escherichia coli from Malawi, which was selected for in vitro in a subinhibitory concentration of gentamicin. The SCV was auxotrophic for hemin and had impaired biofilm formation compared to the ancestral isolates. A single novel nucleotide polymorphism (SNP) in hemA, which encodes a glutamyl-tRNA reductase that catalyses the initial step of porphyrin biosynthesis leading to the production of haem, was responsible for the SCV phenotype. We showed the SNP in hemA resulted in a significant fitness cost to the isolate, which persisted even in the presence of hemin. However, the phenotype quickly reverted during sequential sub-culturing in liquid growth media. As hemA is not found in mammalian cells, and disruption of the gene results in a significant fitness cost, it represents a potential target for novel drug development specifically for the treatment of catheter-associated urinary tract infections caused by E. coli .
-
-
-
Ribosome hibernation: a new molecular framework for targeting nonreplicating persisters of mycobacteria
Treatment of tuberculosis requires a multi-drug regimen administered for at least 6 months. The long-term chemotherapy is attributed in part to a minor subpopulation of nonreplicating Mycobacterium tuberculosis cells that exhibit phenotypic tolerance to antibiotics. The origins of these cells in infected hosts remain unclear. Here we discuss some recent evidence supporting the hypothesis that hibernation of ribosomes in M. tuberculosis, induced by zinc starvation, could be one of the primary mechanisms driving the development of nonreplicating persisters in hosts. We further analyse inconsistencies in previously reported studies to clarify the molecular principles underlying mycobacterial ribosome hibernation.
-
-
-
Molecular basis of bile-salt- and iron-induced enterohaemorrhagic E. coli resistance to cationic antimicrobial peptides
More LessColonization of the gastrointestinal tract by enterohaemorrhagic Escherichia coli (EHEC) is critically dependent on its ability to sense and respond to various microenvironments within the host. EHEC exposure to physiologically relevant levels of bile salts upregulates the two-component system, pmrAB, and the arnBCADTEF operon, resulting in lipopolysaccharide modification and increased resistance to the cationic antimicrobial peptide, polymyxin B (PMB). A similar pmrAB- and arn-dependent PMB resistance has been observed in Salmonella enterica in the presence of ferric iron. Limiting magnesium levels and mild acid can also induce Salmonella resistance to PMB through another two-component system, PhoPQ and the connector protein, PmrD. This study aims to evaluate the relative contributions of a bile-salt mix (BSM), iron, limiting magnesium as well as the roles of pmrAB, phoPQ and pmrD to EHEC’s resistance to PMB. Killing assays show that EHEC treatment with the BSM or iron under excess magnesium and neutral pH conditions induces a pmrAB-dependent, phoP-independent PMB resistance. By contrast, exposure to limiting magnesium triggers a pmrB-, phoP- and pmrD-dependent PMB resistance. The iron-induced PMB resistance is independent of phoP and pmrD under limiting magnesium conditions while the bile-salt-induced PMB resistance is independent of pmrD only under non-PhoP-inducing conditions. GFP-pmrD transcriptional reporter studies reveal that the limiting magnesium enhances pmrD expression, which is repressed upon additional exposure to either BSM or iron. Our results also show that exposure to mild acid enhances PMB resistance in a pmrD-independent manner and GFP reporter results confirm minimal expression of pmrD at this pH regardless of the magnesium level. This study provides novel insights into how EHEC differentially employs PmrAB, PhoPQ and PmrD to monitor and respond to bile salts, iron, acidic pH and magnesium typically encountered within the gastrointestinal tract in order to modulate its survival against cationic antimicrobial peptides.
-
-
-
Siderophore piracy enhances Vibrio cholerae environmental survival and pathogenesis
More LessVibrio cholerae, the aetiological agent of cholera, possesses multiple iron acquisition systems, including those for the transport of siderophores. How these systems benefit V. cholerae in low-iron, polymicrobial communities in environmental settings or during infection remains poorly understood. Here, we demonstrate that in iron-limiting conditions, co-culture of V. cholerae with a number of individual siderophore-producing microbes significantly promoted V. cholerae growth in vitro. We further show that in the host environment with low iron, V. cholerae colonizes better in adult mice in the presence of the siderophore-producing commensal Escherichia coli . Taken together, our results suggest that in aquatic reservoirs or during infection, V. cholerae may overcome environmental and host iron restriction by hijacking siderophores from other microbes.
-
-
-
nosX is essential for whole-cell N2O reduction in Paracoccus denitrificans but not for assembly of copper centres of nitrous oxide reductase
Nitrous oxide (N2O) is a potent greenhouse gas that is produced naturally as an intermediate during the process of denitrification carried out by some soil bacteria. It is consumed by nitrous oxide reductase (N2OR), the terminal enzyme of the denitrification pathway, which catalyses a reduction reaction to generate dinitrogen. N2OR contains two important copper cofactors (CuA and CuZ centres) that are essential for activity, and in copper-limited environments, N2OR fails to function, contributing to rising levels of atmospheric N2O and a major environmental challenge. Here we report studies of nosX, one of eight genes in the nos cluster of the soil dwelling α-proteobaterium Paraccocus denitrificans. A P. denitrificans ΔnosX deletion mutant failed to reduce N2O under both copper-sufficient and copper-limited conditions, demonstrating that NosX plays an essential role in N2OR activity. N2OR isolated from nosX-deficient cells was found to be unaffected in terms of the assembly of its copper cofactors, and to be active in in vitro assays, indicating that NosX is not required for the maturation of the enzyme; in particular, it plays no part in the assembly of either of the CuA and CuZ centres. Furthermore, quantitative Reverse Transcription PCR (qRT-PCR) studies showed that NosX does not significantly affect the expression of the N2OR-encoding nosZ gene. NosX is a homologue of the FAD-binding protein ApbE from Pseudomonas stutzeri , which functions in the flavinylation of another N2OR accessory protein, NosR. Thus, it is likely that NosX is a system-specific maturation factor of NosR, and so is indirectly involved in maintaining the reaction cycle of N2OR and cellular N2O reduction.
-
-
-
Activation of a [NiFe]-hydrogenase-4 isoenzyme by maturation proteases
More LessMaturation of [NiFe]-hydrogenases often involves specific proteases responsible for cleavage of the catalytic subunits. Escherichia coli HycI is the protease dedicated to maturation of the Hydrogenase-3 isoenzyme, a component of formate hydrogenlyase-1. In this work, it is demonstrated that a Pectobacterium atrosepticum HycI homologue, HyfK, is required for hydrogenase-4 activity, a component of formate hydrogenlyase-2, in that bacterium. The P. atrosepticum ΔhyfK mutant phenotype could be rescued by either P. atrosepticum hyfK or E. coli hycI on a plasmid. Conversely, an E. coli ΔhycI mutant was complemented by either E. coli hycI or P. atrosepticum hyfK in trans. E. coli is a rare example of a bacterium containing both hydrogenase-3 and hydrogenase-4, however the operon encoding hydrogenase-4 has no maturation protease gene. This work suggests HycI should be sufficient for maturation of both E. coli formate hydrogenlyases, however no formate hydrogenlyase-2 activity was detected in any E. coli strains tested here.
-
-
-
Genetic regulation, biochemical properties and physiological importance of arginase from Sinorhizobium meliloti
In bacteria, l-arginine is a precursor of various metabolites and can serve as a source of carbon and/or nitrogen. Arginine catabolism by arginase, which hydrolyzes arginine to l-ornithine and urea, is common in nature but has not been studied in symbiotic nitrogen-fixing rhizobia. The genome of the alfalfa microsymbiont Sinorhizobium meliloti 1021 has two genes annotated as arginases, argI1 (smc03091) and argI2 (sma1711). Biochemical assays with purified ArgI1 and ArgI2 (as 6His-Sumo-tagged proteins) showed that only ArgI1 had detectable arginase activity. A 1021 argI1 null mutant lacked arginase activity and grew at a drastically reduced rate with arginine as sole nitrogen source. Wild-type growth and arginase activity were restored in the argI1 mutant genetically complemented with a genomically integrated argI1 gene. In the wild-type, arginase activity and argI1 transcription were induced several fold by exogenous arginine. ArgI1 purified as a 6His-Sumo-tagged protein had its highest in vitro enzymatic activity at pH 7.5 with Ni2+ as cofactor. The enzyme was also active with Mn2+ and Co2+, both of which gave the enzyme the highest activities at a more alkaline pH. The 6His-Sumo-ArgI1 comprised three identical subunits based on the migration of the urea-dissociated protein in a native polyacrylamide gel. A Lrp-like regulator (smc03092) divergently transcribed from argI1 was required for arginase induction by arginine or ornithine. This regulator was designated ArgIR. Electrophoretic mobility shift assays showed that purified ArgIR bound to the argI1 promoter in a region preceding the predicted argI1 transcriptional start. Our results indicate that ArgI1 is the sole arginase in S. meliloti , that it contributes substantially to arginine catabolism in vivo and that argI1 induction by arginine is dependent on ArgIR.
-
-
-
Effect of four kinds of complexing iron on the process of iron uptake by Anabaena flos-aquae
More LessAbstract
Iron (Fe), which is a necessary micronutrient for algal growth, plays an important role in the physiological metabolism and enzymatic reactions of algae. This study aimed to investigate the absorption process of four kinds of complexing iron absorbed by Anabaena flos-aquae. Results showed that the absorptive capacity of A. flos-aquae to complex iron was inversely proportional to the stability of the complex bond of complex iron. Complex iron with weak binding ability can be quickly adsorbed by A. flos-aquae. The absorptive rate was as follows: ferric humate, ferric oxalate >ammonium ferric citrate >EDTA Fe. For EDTA-Fe with a strong binding ability, a moderate iron concentration (e.g. 0.6 mg l−1) is favourable for iron uptake by A. flos-aquae. Our experiments also revealed that the process of separating iron from complex iron before entering algal cells was probably as follows: iron complexed with organic ligands were firstly adsorbed on the surface of algae cells; afterwards, iron ions were captured by organic matter on the surface of algae cells, accompanied by the rupture of the bond between Fe3+ and ligand; finally, the Fe3+ entered into the cell of algae while the organic ligands returned to the medium.
-