Avian Infectious Diseases

Infectious diseases continue to threaten the sustainability, productivity and growth of the poultry industry worldwide and some present a risk to public health. Many are also present in wild bird populations, with the potential to spill over into domestic birds.
Previously curated by Professor Paul Britton and Dr Mike Skinner, in line with the ‘Pathogenesis and Molecular Biology of Avian Viruses’ Focused Meeting, this collection and the Focused Meeting have been expanded to include bacteria and parasites.
Guest-edited by organisers of the Avian Infectious Diseases 2021 Focused Meeting, Dr Holly Shelton (The Pirbright Institute) and Dr Andrew Broadbent (The Pirbright Institute and University of Maryland), this collection presents high-quality work from Journal of General Virology and Journal of Medical Microbiology on important avian pathogens: their interactions with the host, cell biology, molecular epidemiology and methods of control.
Image credit: iStock/Sonja Filitz.
Collection Contents
21 - 38 of 38 results
-
-
Protective efficacy of an inactivated chimeric H5 avian influenza vaccine against H5 highly pathogenic avian influenza virus clades 2.3.4.4 and 2.3.2.1
More LessThe H5 subtype of highly pathogenic avian influenza (HPAI) viruses pose a serious challenge to public health and the poultry industry in China. In this study, we generated a chimeric QH/KJ recombinant virus expressing the entire haemagglutinin (HA)-1 region of the HPAI virus A/chicken/China/QH/2017(H5N6) (clade 2.3.4.4) and the HA2 region of the HPAI virus A/chicken/China/KJ/2017(H5N1) (clade 2.3.2.1). The resulting chimeric PR8-QH/KJ virus exhibited similar in vitro growth kinetics as the parental PR8-QH and PR8-KJ viruses. The chimeric PR8-QH/KJ virus induced specific, cross-reactive haemagglutination-inhibition and serum-neutralizing antibodies against both QH and KJ viruses, although PR8-QH and PR8-KJ exhibited no cross-reactivity with each other. Furthermore, the chimeric PR8-QH/KJ vaccine significantly reduced virus shedding and completely protected chickens from challenge with HPAI H5N6 and H5N1 viruses. However, the Re-8 vaccine against clade 2.3.4.4 viruses provided specific-pathogen-free chickens only partial protection when challenged with QH virus. Our results suggest that the antigenic variation of these epidemic viruses occurred and they can escape the current vaccine immunization. The Re-8 vaccine needs an update. The chimeric PR8-QH/KJ vaccine is effective against H5 HPAI virus clades 2.3.4.4 and 2.3.2.1 in chickens.
-
-
-
Recombinant infectious bronchitis viruses expressing heterologous S1 subunits: potential for a new generation of vaccines that replicate in Vero cells
More LessThe spike glycoprotein (S) of infectious bronchitis virus (IBV) comprises two subunits, S1 and S2. We have previously demonstrated that the S2 subunit of the avirulent Beau-R strain is responsible for its extended cellular tropism for Vero cells. Two recombinant infectious bronchitis viruses (rIBVs) have been generated; the immunogenic S1 subunit is derived from the IBV vaccine strain, H120, or the virulent field strain, QX, within the genetic background of Beau-R. The rIBVs BeauR-H120(S1) and BeauR-QX(S1) are capable of replicating in primary chicken kidney cell cultures and in Vero cells. These results demonstrate that rIBVs are able to express S1 subunits from genetically diverse strains of IBV, which will enable the rational design of a future generation of IBV vaccines that may be grown in Vero cells.
-
-
-
The ADRP domain from a virulent strain of infectious bronchitis virus is not sufficient to confer a pathogenic phenotype to the attenuated Beaudette strain
More LessThe replicase gene of the coronavirus infectious bronchitis virus (IBV) encodes 15 non-structural proteins (nsps). Nsp 3 is a multi-functional protein containing a conserved ADP-ribose-1″-phosphatase (ADRP) domain. The crystal structures of the domain from two strains of IBV, M41 (virulent) and Beaudette (avirulent), identified a key difference; M41 contains a conserved triple-glycine motif, whilst Beaudette contains a glycine-to-serine mutation that is predicted to abolish ADRP activity. Although ADRP activity has not been formally demonstrated for IBV nsp 3, Beaudette fails to bind ADP-ribose. The role of ADRP in virulence was investigated by generating rIBVs, based on Beaudette, containing either a restored triple-glycine motif or the complete M41 ADRP domain. Replication in vitro was unaffected by the ADRP modifications and the in vivo phenotype of the rIBVs was found to be apathogenic, indicating that restoration of the triple-glycine motif is not sufficient to restore virulence to the apathogenic Beaudette strain.
-
-
-
Immunogenicity in chickens with orally administered recombinant chicken-borne Lactobacillus saerimneri expressing FimA and OmpC antigen of O78 avian pathogenic Escherichia coli
Purpose. Avian colibacillosis is responsible for economic losses to poultry producers worldwide. To combat this, we aimed to develop an effective oral vaccine for chicken against O78 avian pathogenic Escherichia coli (APEC) infection through a Lactobacillus delivery system.
Methodology. Eight Lactobacillus strains isolated from the intestines of broiler chickens were evaluated based on their in vitro adherence ability to assess their potential as a delivery vector. Fimbrial subunit A (FimA) and outer-membrane protein C (OmpC) of APEC with and without fusion to dendritic cell-targeting peptide (DCpep) and microfold cell-targeting peptide (Co1) were displayed on the surface of Lactobacillus saerimneri M-11 and yielded vaccine groups (pPG-ompC-fimA/M-11 and pPG-ompC-fimA-Co1-DCpep/M-11, respectively). The colonization of the recombinant strains in vivo was assessed and the immunogenicity and protective efficacy of orally administered recombinant strains in chickens were evaluated.
Results. The colonization of the recombinant strains in vivo revealed no significant differences between the recombinant and wild-type strains. Chickens orally administered with vaccine groups showed significantly higher levels of OmpC/FimA-specific IgG in serum and mucosal IgA in cecum lavage, nasal lavage and stool compared to the pPG/M-11 group. After challenge with APEC CVCC1553, better protective efficacy was observed in chickens orally immunized with pPG-ompC-fimA/M-11 and pPG-ompC-fimA-Co1-DCpep/M-11, but no significant differences were observed between the two groups.
Conclusions. Recombinant chicken-borne L. saerimneri M-11 showed good immunogenicity in chickens, suggesting that it may be a promising vaccine candidate against APEC infections. However, the activity of mammalian DCpep and Co1 was not significant in chickens.
-
-
-
Differential gene expression in chicken primary B cells infected ex vivo with attenuated and very virulent strains of infectious bursal disease virus (IBDV)
Infectious bursal disease virus (IBDV) belongs to the family Birnaviridae and is economically important to the poultry industry worldwide. IBDV infects B cells in the bursa of Fabricius (BF), causing immunosuppression and morbidity in young chickens. In addition to strains that cause classical Gumboro disease, the so-called ‘very virulent’ (vv) strain, also in circulation, causes more severe disease and increased mortality. IBDV has traditionally been controlled through the use of live attenuated vaccines, with attenuation resulting from serial passage in non-lymphoid cells. However, the factors that contribute to the vv or attenuated phenotypes are poorly understood. In order to address this, we aimed to investigate host cell–IBDV interactions using a recently described chicken primary B-cell model, where chicken B cells are harvested from the BF and cultured ex vivo in the presence of chicken CD40L. We demonstrated that these cells could support the replication of IBDV when infected ex vivo in the laboratory. Furthermore, we evaluated the gene expression profiles of B cells infected with an attenuated strain (D78) and a very virulent strain (UK661) by microarray. We found that key genes involved in B-cell activation and signalling (TNFSF13B, CD72 and GRAP) were down-regulated following infection relative to mock, which we speculate could contribute to IBDV-mediated immunosuppression. Moreover, cells responded to infection by expressing antiviral type I IFNs and IFN-stimulated genes, but the induction was far less pronounced upon infection with UK661, which we speculate could contribute to its virulence.
-
-
-
An updated review of avian-origin Tembusu virus: a newly emerging avian Flavivirus
More LessTembusu virus (TMUV, genus Flavivirus, family Flaviviridae) was first isolated in 1955 from Culex tritaeniorhynchus mosquitoes in Kuala Lumpur, Malaysia. In April 2010, duck TMUV was first identified as the causative agent of egg-drop syndrome, characterized by a substantial decrease in egg laying and depression, growth retardation and neurological signs or death in infected egg-laying and breeder ducks, in the People’s Republic of China. Since 2010, duck TMUV has spread to most of the duck-producing regions in China, including many of the coastal provinces, neighbouring regions and certain Southeast Asia areas (i.e. Thailand and Malaysia). This review describes the current understanding of the genome characteristics, host range, transmission, epidemiology, phylogenetic and immune evasion of avian-origin TMUV and the innate immune response of the host.
-
-
-
High prevalence of clonally diverse spa type t026 Staphylococcus aureus contaminating rural eggshells
More LessPurpose. The presence of Staphylococcus aureus in poultry and poultry products, including eggs, increases its potential to enter the food chain, resulting in foodborne diseases. In this context, eggshell colonization by staphylococci may represent a risk factor. This study aimed to investigate the contamination of rural eggshell by S. aureus and to characterize the key features of the isolated strains.
Methodology. Antibiotic resistance was assessed by disc diffusion. Resistant isolates were analysed by PCR for the identification of associated genetic determinants of resistance. PCR was also used to screen for the presence of genes coding for toxins, namely, sea, sec, sei, sem, seo and tst. The genetic characterization was extended by means of agr locus typing and spa typing.
Results. 34 S. aureus were isolated. Macrolide- and tetracycline-resistant strains were prevalent. All strains were susceptible to oxacillin, cefoxitin and trimethoprim-sulfamethoxazole. PCR screening for genes encoding enterotoxins detected several virulence patterns, which, together with s pa-typing and agr-locus typing, allowed cluster analysis and the description of novel clones.
Conclusion. Continuous monitoring of staphylococci is needed also in rural or natural settings. Increasing the number of samples and expanding the geographical region will be needed to further extend the significance of the study.
-
-
-
Highly pathogenic avian influenza H5N1 clade 2.3.2.1 and clade 2.3.4 viruses do not induce a clade-specific phenotype in mallard ducks
Among the diverse clades of highly pathogenic avian influenza (HPAI) H5N1 viruses of the goose/Guangdong lineage, only a few have been able to spread across continents: clade 2.2 viruses spread from China to Europe and into Africa in 2005–2006, clade 2.3.2.1 viruses spread from China to Eastern Europe in 2009–2010 and clade 2.3.4.4 viruses of the H5Nx subtype spread from China to Europe and North America in 2014/2015. While the poultry trade and wild-bird migration have been implicated in the spread of HPAI H5N1 viruses, it has been proposed that robust virus-shedding by wild ducks in the absence of overt clinical signs may have contributed to the wider dissemination of the clade 2.2, 2.3.2.1 and 2.3.4.4 viruses. Here we determined the phenotype of two divergent viruses from clade 2.3.2.1, a clade that spread widely, and two divergent viruses from clade 2.3.4, a clade that was constrained to Southeast Asia, in young (ducklings) and adult (juvenile) mallard ducks. We found that the virus-shedding magnitude and duration, transmission pattern and pathogenicity of the viruses in young and adult mallard ducks were largely independent of the virus clade. A clade-specific pattern could only be detected in terms of cumulative virus shedding, which was higher with clade 2.3.2.1 than with clade 2.3.4 viruses in juvenile mallards, but not in ducklings. The ability of clade 2.3.2.1c A/common buzzard/Bulgaria/38 WB/2010-like viruses to spread cross-continentally may, therefore, have been strain-specific or independent of phenotype in wild ducks.
-
-
-
Marek's disease virus infection of phagocytes: a de novo in vitro infection model
Marek’s disease virus (MDV) is an alphaherpesvirus that induces T-cell lymphomas in chickens. Natural infections in vivo are caused by the inhalation of infected poultry house dust and it is presumed that MDV infection is initiated in the macrophages from where the infection is passed to B cells and activated T cells. Virus can be detected in B and T cells and macrophages in vivo, and both B and T cells can be infected in vitro. However, attempts to infect macrophages in vitro have not been successful. The aim of this study was to develop a model for infecting phagocytes [macrophages and dendritic cells (DCs)] with MDV in vitro and to characterize the infected cells. Chicken bone marrow cells were cultured with chicken CSF-1 or chicken IL-4 and chicken CSF-2 for 4 days to produce macrophages and DCs, respectively, and then co-cultured with FACS-sorted chicken embryo fibroblasts (CEFs) infected with recombinant MDV expressing EGFP. Infected phagocytes were identified and sorted by FACS using EGFP expression and phagocyte-specific mAbs. Detection of MDV-specific transcripts of ICP4 (immediate early), pp38 (early), gB (late) and Meq by RT-PCR provided evidence for MDV replication in the infected phagocytes. Time-lapse confocal microscopy was also used to demonstrate MDV spread in these cells. Subsequent co-culture of infected macrophages with CEFs suggests that productive virus infection may occur in these cell types. This is the first report of in vitro infection of phagocytic cells by MDV.
-
-
-
Putative roles as oncogene or tumour suppressor of the Mid-clustered microRNAs in Gallid alphaherpesvirus 2 (GaHV2) induced Marek’s disease lymphomagenesis
In the last decade, numerous microRNAs (miRNAs) have been identified in diverse virus families, particularly in herpesviruses. Gallid alphaherpesvirus 2 (GaHV2) is a representative oncogenic alphaherpesvirus that induces rapid-onset T-cell lymphomas in its natural hosts, namely Marek’s disease (MD). In the GaHV2 genome there are 26 mature miRNAs derived from 14 precursors assembled into three clusters, namely the Meq-cluster, Mid-cluster and LAT-cluster. Several GaHV2 miRNAs, especially those in the Meq-cluster (e.g. miR-M4-5p), have been demonstrated to be critical in MD pathogenesis and/or tumorigenesis. Interestingly the downstream Mid-cluster is regulated and transcribed by the same promoter as the Meq-cluster in the latent phase of the infection, but the role of these Mid-clustered miRNAs in GaHV2 biology remains unclear. We have generated the deletion mutants of the Mid-cluster and of its associated individual miRNAs in GX0101 virus, a very virulent GaHV2 strain, and demonstrated that the Mid-clustered miRNAs are not essential for virus replication. Using GaHV2-infected chickens as an animal model, we found that, compared with parental GX0101 virus, the individual deletion of miR-M31 decreased the mortality and gross tumour incidence of infected chickens while the deletion individually of miR-M1 or miR-M11 unexpectedly increased viral pathogenicity or oncogenicity, similarly to the deletion of the entire Mid-cluster region. More importantly, our data further confirm that miR-M11-5p, the miR-M11-derived mature miRNA, targets the viral oncogene meq and suppresses its expression in GaHV2 infection. We report here that members of the Mid-clustered miRNAs, miR-M31-3p and miR-M11-5p, potentially act either as oncogene or tumour suppressor in MD lymphomagenesis.
-
-
-
A Y527A mutation in the fusion protein of Newcastle disease virus strain LaSota leads to a hyperfusogenic virus with increased replication and immunogenicity
More LessNewcastle disease is a highly contagious and economically important disease of poultry. Low-virulence Newcastle disease virus (NDV) strains such as B1 and LaSota have been used as live vaccines, with a proven track record of safety and efficacy. However, these vaccines do not completely prevent infection or virus shedding. Therefore, there is a need to enhance the immunogenicity of these vaccine strains. In this study, the effect of mutations in the conserved tyrosine residues of the F protein of vaccine strain LaSota was investigated. Our results showed that substitution of tyrosine at position 527 by alanine resulted in a hyperfusogenic virus with increased replication and immunogenicity. Challenge study with highly virulent NDV strain Texas GB showed that immunization of chickens with Y527A mutant virus provided 100 % protection and no shedding of the challenge virus. This study suggests that the strain LaSota harbouring the Y527A mutation may represent a more efficacious vaccine.
-
-
-
First complete genome sequence of European turkey coronavirus suggests complex recombination history related with US turkey and guinea fowl coronaviruses
A full-length genome sequence of 27 739 nt was determined for the only known European turkey coronavirus (TCoV) isolate. In general, the order, number and size of ORFs were consistent with other gammacoronaviruses. Three points of recombination were predicted, one towards the end of 1a, a second in 1b just upstream of S and a third in 3b. Phylogenetic analysis of the four regions defined by these three points supported the previous notion that European and American viruses do indeed have different evolutionary pathways. Very close relationships were revealed between the European TCoV and the European guinea fowl coronavirus in all regions except one, and both were shown to be closely related to the European infectious bronchitis virus (IBV) Italy 2005. None of these regions of sequence grouped European and American TCoVs. The region of sequence containing the S gene was unique in grouping all turkey and guinea fowl coronaviruses together, separating them from IBVs. Interestingly the French guinea fowl virus was more closely related to the North American viruses. These data demonstrate that European turkey and guinea fowl coronaviruses share a common genetic backbone (most likely an ancestor of IBV Italy 2005) and suggest that this recombined in two separate events with different, yet related, unknown avian coronaviruses, acquiring their S-3a genes. The data also showed that the North American viruses do not share a common backbone with European turkey and guinea fowl viruses; however, they do share similar S-3a genes with guinea fowl virus.
-
-
-
Next-generation sequencing shows West Nile virus quasispecies diversification after a single passage in a carrion crow (Corvus corone) in vivo infection model
West Nile virus (WNV) occurs as a population of genetic variants (quasispecies) infecting a single animal. Previous low-resolution viral genetic diversity estimates in sampled wild birds and mosquitoes, and in multiple-passage adaptation studies in vivo or in cell culture, suggest that WNV genetic diversification is mostly limited to the mosquito vector. This study investigated genetic diversification of WNV in avian hosts during a single passage using next-generation sequencing. Wild-captured carrion crows were subcutaneously infected using a clonal Middle-East WNV. Blood samples were collected 2 and 4 days post-infection. A reverse-transcription (RT)-PCR approach was used to amplify the WNV genome directly from serum samples prior to next-generation sequencing resulting in an average depth of at least 700 × in each sample. Appropriate controls were sequenced to discriminate biologically relevant low-frequency variants from experimentally introduced errors. The WNV populations in the wild crows showed significant diversification away from the inoculum virus quasispecies structure. By contrast, WNV populations in intracerebrally infected day-old chickens did not diversify from that of the inoculum. Where previous studies concluded that WNV genetic diversification is only experimentally demonstrated in its permissive insect vector species, we have experimentally shown significant diversification of WNV populations in a wild bird reservoir species.
-
-
-
PA-X is a virulence factor in avian H9N2 influenza virus
H9N2 influenza viruses have been circulating worldwide in multiple avian species, and regularly infect pigs and humans. Recently, a novel protein, PA-X, produced from the PA gene by ribosomal frameshifting, was demonstrated to be an antivirulence factor in pandemic 2009 H1N1, highly pathogenic avian H5N1 and 1918 H1N1 viruses. However, a similar role of PA-X in the prevalent H9N2 avian influenza viruses has not been established. In this study, we compared the virulence and cytopathogenicity of H9N2 WT virus and H9N2 PA-X-deficient virus. Loss of PA-X in H9N2 virus reduced apoptosis and had a marginal effect on progeny virus output in human pulmonary adenocarcinoma (A549) cells. Without PA-X, PA was less able to suppress co-expressed GFP in human embryonic kidney 293T cells. Furthermore, absence of PA-X in H9N2 virus attenuated viral pathogenicity in mice, which showed no mortality, reduced progeny virus production, mild-to-normal lung histopathology, and dampened proinflammatory cytokine and chemokine response. Therefore, unlike previously reported H1N1 and H5N1 viruses, we show that PA-X protein in H9N2 virus is a pro-virulence factor in facilitating viral pathogenicity and that the pro- or antivirulence role of PA-X in influenza viruses is virus strain-dependent.
-
-
-
An avian leukosis virus subgroup J isolate with a Rous sarcoma virus-like 5′-LTR shows enhanced replication capability
Avian leukosis virus subgroup J (ALV-J) was first isolated from meat-producing chickens that had developed myeloid leukosis. However, ALV-J infections associated with hemangiomas have occurred in egg-producing (layer) flocks in China. In this study, we identified an ALV-J layer isolate (HLJ13SH01) as a recombinant of ALV-J and a Rous sarcoma virus Schmidt-Ruppin B strain (RSV-SRB), which contained the RSV-SRB 5′-LTR and the other genes of ALV-J. Replication kinetic testing indicated that the HLJ13SH01 strain replicated faster than other ALV-J layer isolates in vitro. Sequence analysis indicated that the main difference between the two isolates was the 5′-LTR sequences, particularly the U3 sequences. A 19 nt insertion was uniquely found in the U3 region of the HLJ13SH01 strain. The results of a Dual-Glo luciferase assay revealed that the 19 nt insertion in the HLJ13SH01 strain increased the enhancer activity of the U3 region. Moreover, an additional CCAAT/enhancer element was found in the 19 nt insertion and the luciferase assay indicated that this element played a key role in increasing the enhancer activity of the 5′-U3 region. To confirm the potentiation effect of the 19 nt insertion and the CCAAT/enhancer element on virus replication, three infectious clones with 5′-U3 region variations were constructed and rescued. Replication kinetic testing of the rescued viruses demonstrated that the CCAAT/enhancer element in the 19 nt insertion enhanced the replication capacity of the ALV-J recombinant in vitro.
-
-
-
Identification and genetic characterization of a novel picornavirus from chickens
A novel picornavirus from commercial broiler chickens (Gallus gallus domesticus) has been identified and genetically characterized. The viral genome consists of a single-stranded, positive-sense RNA genome of >9243 nt excluding the poly(A) tail and as such represents one of the largest picornavirus genomes reported to date. The virus genome is GC-rich with a G+C content of 54.5 %. The genomic organization is similar to other picornaviruses: 5′ UTR–L–VP0–VP3–VP1–2A–2B–2C–3A–3B–3C–3D–3′ UTR. The partially characterized 5′ UTR of >373 nt appears to possess a type II internal ribosomal entry site (IRES), which is also found in members of the genera Aphthovirus and Cardiovirus. This IRES exhibits significant sequence similarity to turkey ‘gallivirus A’. The 3′ UTR of 278 nt contains the conserved 48 nt ‘barbell-like’ structure identified in ‘passerivirus’, ‘gallivirus’, Avihepatovirus and some Kobuvirus genus members. A predicted large open reading frame (ORF) of 8592 nt encodes a potential polyprotein precursor of 2864 amino acids. In addition, the virus contains a predicted large L protein of 462 amino acids. Pairwise sequence comparisons, along with phylogenetic analysis revealed the highest percentage identity to ‘Passerivirus A’ (formerly called turdivirus 1), forming a monophyletic group across the P1, P2 and P3 regions, with <40, <40 and <50 % amino acid identity respectively. Reduced identity was observed against ‘gallivirus A’ and members of the Kobuvirus genus. Quantitative PCR analysis estimated a range of 4×105 to 5×108 viral genome copies g-1 in 22 (73 %) of 30 PCR-positive faeces. Based on sequence and phylogenetic analysis, we propose that this virus is the first member of a potential novel genus within the family Picornaviridae. Further studies are required to investigate the pathogenic potential of this virus within the avian host.
-
-
-
Complete genome analysis identifies Tvärminne avian virus as a candidate new species within the genus Orthoreovirus
Orthoreoviruses have been associated with a variety of diseases in domesticated poultry and wild-living birds. In 2002, a reovirus strain named Tvärminne avian virus (TVAV), was identified in Finland in a crow showing neurological disorders. The objective of this study was the molecular characterization of this novel reovirus strain. Genome sequencing was performed by combining semiconductor sequencing and traditional capillary sequencing. Sequence and phylogenetic analyses showed that TVAV shares low nucleotide sequence identity with other reoviruses (range for each gene, 31–72 %) including strains belonging to the species Avian orthoreovirus. The most closely related reovirus strain was an isolate identified in Steller sea lion. Our data indicate that TVAV is a divergent reovirus of avian origin that may be the first representative of a distinct virus species within the genus Orthoreovirus.
-
-
-
Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses
More LessGroup A rotaviruses (RVAs) are an important cause of diarrhoeal illness in humans, as well as in mammalian and avian animal species. Previous sequence analyses indicated that avian RVAs are related only distantly to mammalian RVAs. Here, the complete genomes of RVA strain 03V0002E10 from turkey (Meleagris gallopavo) and RVA strain 10V0112H5 from pheasant (Phasianus colchicus) were analysed using a combination of 454 deep sequencing and Sanger sequencing technologies. An adenine-rich insertion similar to that found in the chicken RVA strain 02V0002G3, but considerably shorter, was found in the 3′ NCR of the NSP1 gene of the pheasant strain. Most genome segments of both strains were related closely to those of avian RVAs. The novel genotype N10 was assigned to the NSP2 gene of the pheasant RVA, which is related most closely to genotype N6 found in avian RVAs. However, this virus contains a VP4 gene of the novel genotype P[37], which is related most closely to RVAs from pigs, dogs and humans. This strain either may represent an avian/mammalian rotavirus reassortant, or it carries an unusual avian rotavirus VP4 gene, thereby broadening the potential genetic and antigenic variability among RVAs.
-