Negative Results

Access Microbiology provides a platform to publish sound science across the entire field of microbiology. Negative results are an integral part of sound science and research integrity, adding value to the scientific literature that is often overlooked. In line with the platform’s mission, we have collated impactful negative results studies published since Access Microbiology’s launch in 2019. Science integrity consultant Elisabeth Bik provides an editorial for this collection, on the importance and value of negative data.
With ongoing debate in the scientific community about research integrity and the pressure to publish novel results, we want to highlight the high quality negative results studies published on the platform. New papers will be added to the collection as these are published.
Collection Contents
-
-
Publishing negative results is good for science
More LessScientists face challenges in publishing negative results, because most scientific journals are biassed in accepting positive and novel findings. Despite their importance, negative results often go unpublished, leading to duplication of efforts, biassed meta-analyses, and ethical concerns regarding animal and human studies. In this light, the initiative by Access Microbiology to collect and publish negative results in the field of microbiology is a very important and valuable contribution towards unbiassed science.
-
-
-
Lack of detection of SARS-CoV-2 in wildlife from Kerala, India in 2020–21
Spillover of SARS-CoV-2 into a variety of wild and domestic animals has been an ongoing feature of the human pandemic. The establishment of a new reservoir in white-tailed deer in North America and increasing divergence of the viruses circulating in them from those circulating in the human population has highlighted the ongoing risk this poses for global health. Some parts of the world have seen more intensive monitoring of wildlife species for SARS-CoV-2 and related coronaviruses but there are still very large gaps in geographical and species-specific information. This paper reports negative results for SARS-CoV-2 PCR based testing using a pan coronavirus end point RDRP PCR and a Sarbecovirus specific E gene qPCR on lung and or gut tissue from wildlife from the Indian State of Kerala. These animals included: 121 Rhinolophus rouxii (Rufous Horsehoe Bat), six Rhinolophus bedommei (Lesser Woolly Horseshoe Bat), 15 Rossettus leschenaultii (Fulvous Fruit Bat), 47 Macaca radiata (Bonnet macaques), 35 Paradoxurus hermaphroditus (Common Palm Civet), five Viverricula indica (Small Indian Civet), four Herpestes edwardsii (Common Mongoose), ten Panthera tigris (Bengal Tiger), eight Panthera pardus fusca (Indian Leopard), four Prionailurus bengalensis (Leopard cats), two Felis chaus (Jungle cats), two Cuon alpinus (Wild dogs) and one Melursus ursinus (sloth bear).
-
-
-
Binding of respiratory syncytial virus particles to platelets does not result in their degranulation in vitro
More LessRespiratory syncytial virus (RSV) is a major cause of severe respiratory infection in infants and the elderly. The mechanisms behind severe RSV disease are incompletely understood, but a dysregulated immune response probably plays an important role. Platelets are increasingly being recognized as immune cells and are involved in the pathology of several viruses. The release of chemokines from platelets upon activation may attract, for example, neutrophils to the site of infection, which is a hallmark of RSV pathology. In addition, since RSV infections are sometimes associated with cardiovascular events and platelets express several known RSV receptors, we investigated the effect of RSV exposure on platelet degranulation. Washed human platelets were incubated with sucrose-purified RSV particles. P-selectin and CD63 surface expression and CCL5 secretion were measured to assess platelet degranulation. We found that platelets bind and internalize RSV particles, but this does not result in degranulation. Our results suggest that platelets do not play a direct role in RSV pathology by releasing chemokines to attract inflammatory cells.
-
-
-
Fluoroquinolone resistance does not facilitate phage Φ13 integration or excision in Staphylococcus aureus
More LessProphages of the ΦSa3int family are commonly found in human-associated strains of Staphylococcus aureus where they encode factors for evading the human innate immune system. In contrast, they are usually absent in livestock-associated methicillin-resistant S. aureus (LA-MRSA) strains where the phage attachment site is mutated compared to the human strains. However, ΦSa3int phages have been found in a subset of LA-MRSA strains belonging to clonal complex 398 (CC398), including a lineage that is widespread in pig farms in Northern Jutland, Denmark. This lineage contains amino acid changes in the DNA topoisomerase IV and the DNA gyrase encoded by grlA and gyrA, respectively, which have been associated with fluoroquinolone (FQ) resistance. As both of these enzymes are involved in DNA supercoiling, we speculated that the mutations might impact recombination between the ΦSa3int phage and the bacterial chromosome. To examine this, we introduced the FQ resistance mutations into S. aureus 8325-4attBLA that carry the mutated CC398-like bacterial attachment site for ΦSa3int phages. When monitoring phage integration and release of Φ13, a well-described representative of the ΦSa3int phage family, we did not observe any significant differences between the FQ-resistant mutant and the wild-type strain. Thus our results suggest that mutations in grlA and gyrA do not contribute to the presence of the ΦSa3int phages in LA-MRSA CC398.
-
-
-
Microbial communities in freshwater used for hydraulic fracturing are unable to withstand the high temperatures and pressures characteristic of fractured shales
Natural gas is recovered from shale formations by hydraulic fracturing, a process known to create microbial ecosystems in the deep subsurface. Microbial communities that emerge in fractured shales include organisms known to degrade fracturing fluid additives and contribute to corrosion of well infrastructure. In order to limit these negative microbial processes, it is essential to constrain the source of the responsible micro-organisms. Previous studies have identified a number of potential sources, including fracturing fluids and drilling muds, yet these sources remain largely untested. Here, we apply high-pressure experimental approaches to assess whether the microbial community in synthetic fracturing fluid made from freshwater reservoir water can withstand the temperature and pressure conditions of hydraulic fracturing and the fractured shale environment. Using cell enumerations, DNA extraction and culturing, we show that the community can withstand high pressure or high temperature alone, but the combination of both is fatal. These results suggest that initial freshwater-based fracturing fluids are an unlikely source of micro-organisms in fractured shales. These findings indicate that potentially problematic lineages, such as sulfidogenic strains of Halanaerobium that have been found to dominate fractured shale microbial communities, likely derive from other input sources into the downwell environment, such as drilling muds.
-
-
-
Genetic and lipidomic analyses suggest that Nostoc punctiforme, a plant-symbiotic cyanobacterium, does not produce sphingolipids
Sphingolipids, a class of amino-alcohol-based lipids, are well characterized in eukaryotes and in some anaerobic bacteria. However, the only sphingolipids so far identified in cyanobacteria are two ceramides (i.e., an acetylsphingomyelin and a cerebroside), both based on unbranched, long-chain base (LCB) sphingolipids in Scytonema julianum and Moorea producens , respectively. The first step in de novo sphingolipid biosynthesis is the condensation of l-serine with palmitoyl-CoA to produce 3-keto-diyhydrosphingosine (KDS). This reaction is catalyzed by serine palmitoyltransferase (SPT), which belongs to a small family of pyridoxal phosphate-dependent α-oxoamine synthase (AOS) enzymes. Based on sequence similarity to molecularly characterized bacterial SPT peptides, we identified a putative SPT (Npun_R3567) from the model nitrogen-fixing, plant-symbiotic cyanobacterium, Nostoc punctiforme strain PCC 73102 (ATCC 29133). Gene expression analysis revealed that Npun_R3567 is induced during late-stage diazotrophic growth in N. punctiforme . However, Npun_R3567 could not produce the SPT reaction product, 3-keto-diyhydrosphingosine (KDS), when heterologously expressed in Escherichia coli . This agreed with a sphingolipidomic analysis of N. punctiforme cells, which revealed that no LCBs or ceramides were present. To gain a better understanding of Npun_R3567, we inferred the phylogenetic position of Npun_R3567 relative to other bacterial AOS peptides. Rather than clustering with other bacterial SPTs, Npun_R3567 and the other cyanobacterial BioF homologues formed a separate, monophyletic group. Given that N. punctiforme does not appear to possess any other gene encoding an AOS enzyme, it is altogether unlikely that N. punctiforme is capable of synthesizing sphingolipids. In the context of cross-kingdom symbiosis signalling in which sphingolipids are emerging as important regulators, it appears unlikely that sphingolipids from N. punctiforme play a regulatory role during its symbiotic association with plants.
-
-
-
Atorvastatin does not display an antimicrobial activity on its own nor potentiates the activity of other antibiotics against Acinetobacter baumannii ATCC17978 or A. baumannii AB030
More LessWith the current arsenal of antibiotics increasingly becoming ineffective against bacteria, there is an increasing interest in the possibility of using previously approved non-antibiotic drugs as antimicrobials. Statins have recently been investigated for their antimicrobial activity and their ability to potentially synergize with current treatment options. Atorvastatin had been shown previously to be the most promising candidate for effectivity against Acinetobacter baumannii ATCC17978. In this study, we tested atorvastatin for its activity against an extensively drug-resistant (XDR) strain A. baumannii AB030. However, our data show that atorvastatin has no effect A. baumannii AB030. Intriguingly, atorvastatin was also ineffective against our laboratory’s A. baumannii ATCC17978. This lack of atorvastatin activity against A. baumannii ATCC17978 cannot be attributed to RND efflux pumps as a strain deficient in the three most clinically relevant RND efflux systems in A. baumannii showed no change in susceptibility compared to its parent strain ATCC17978. Further, atorvastatin failed to potentiate the activity of tobramycin and ciprofloxacin. While it is not clear to us why atorvastatin is not active against A. baumannii ATCC17978 used in our study, our study shows that evaluation of compounds for their antibacterial activity should involve multiple strains to account for strain-to-strain variation.
-
-
-
A putative WAVE regulatory complex (WRC) interacting receptor sequence (WIRS) in the cytoplasmic tail of HSV-1 gE does not function in WRC recruitment or neuronal transport
HSV-1 envelope glycoprotein E (gE) is important for viral egress and cell-to-cell spread but the host protein(s) involved in these functions have yet to be determined. We aimed to investigate a role for the Arp2/3 complex and actin regulation in viral egress based on the identification of a WAVE Regulatory Complex (WRC) Interacting Receptor Sequence (WIRS) in the cytoplasmic tail (CT) of gE. A WIRS-dependent interaction between the gE(CT) and subunits of the WRC was demonstrated by GST-pulldown assay and a role for the Arp2/3 complex in cell-to-cell spread was also observed by plaque assay. Subsequent study of a recombinant HSV-1 gE WIRS-mutant found no significant changes to viral production and release based on growth kinetics studies, or changes to plaque and comet size in various cell types, suggesting no function for the motif in cell-to-cell spread. GFP-Trap pulldown and proximity ligation assays were unable to confirm a WIRS-dependent interaction between gE and the WRC in human cell lines though the WIRS-independent interaction observed in situ warrants further study. Confocal microscopy of infected cells of neuronal origin identified no impairment of gE WIRS-mutant HSV-1 anterograde transport along axons. We propose that the identified gE WIRS motif does not function directly in recruitment of the WRC in human cells, in cell-to-cell spread of virus or in anterograde transport along axons. Further studies are needed to understand how HSV-1 manipulates and traverses the actin cytoskeleton and how gE may contribute to these processes in a WIRS-independent manner.
-
-
-
Does salinity affect lifestyle switching in the plant pathogen Fusarium solani?
More LessSymbiotic microbes that live within plant hosts can exhibit a range in function from mutualistic to pathogenic, but the reason for this lifestyle switching remains largely unknown. Here we tested whether environmental stress, specifically salinity, is a factor that can trigger lifestyle switching in a fungus mainly known as a pathogen, Fusarium solani. F. solani was isolated from roots of Phragmites australis (common reed) in saline coastal marshes of Louisiana, USA, and we used Oryza sativa (rice) as a model organism from wetland environments to test the symbiont lifestyle. We plated rice seeds on control plates or plates with F. solani at three levels of salinity (0, 8 and 16 p.p.t.), then assessed germination and seedling growth after 20 days. Salinity strongly reduced percentage germination, slowed the timing of germination and reduced growth of rice. F. solani slowed germination, and it also caused a minor increase in root growth at medium salinity and a minor decrease in root growth at high salinity. Overall, despite being a common pathogen in other crop species (peas, beans, potatoes and many types of cucurbits), we found little evidence that F. solani has a strong pathogenic lifestyle in rice and we found weak evidence that pathogenicity may increase slightly with elevated salinity. These results have implications for both crops and native plant health in the future as soil salinization increases worldwide.
-
-
-
Effect of daily manual toothbrushing with 0.2% chlorhexidine gel on pneumonia-associated pathogens in adults living with profound neuro-disability
More LessPurpose. To investigate the effect of daily toothbrushing with 0.2 % chlorhexidine digluconate (CHX) on the colonization of dental plaque by pathogens associated with pneumonia amongst non-ventilated adults with a neuro-disability.
Methodology. Forty-nine patients living in long-term care were recruited. Daily toothbrushing with 0.2 % CHX gel was conducted for 48 weeks. Plaque accumulation was assessed and microbiological sampling was undertaken every 6 weeks.
Results. At any one time point at least 65 % (n=32) of subjects were found to harbour respiratory pathogens. Although there were significant changes in the proportion of individuals colonized over time with Gram-negative bacilli and Pseudomonas aeruginosa, the changes were not sustained. By week 48 there was no significant difference from the levels that had been recorded at baseline.
Conclusions. Bacteria known to be causal in pneumonia are present and colonize the dental plaque of non-ventilated adults with a neuro-disability. Daily toothbrushing with 0.2 % CHX gel did not produce a sustained reduction in intra-oral respiratory pathogen counts after 48 weeks.
-