Microbial Genomics of Sexually Transmitted Infections

Sexually transmitted infections (STIs) remain a major global public health threat. Often disproportionately impacting specific groups of people, significant morbidity and mortality is caused by common diseases including gonorrhoea, chlamydia, syphilis, HIV infection, Hepatitis B, and disease linked to Human Papilloma Virus. STI Control can be difficult and challenges range from practical obstacles around the distribution of effective antivirals and vaccines to the emergence of antimicrobial resistance (AMR) among bacterial pathogens. Undoubtedly, effective interventions depend upon detailed understanding of the pathogens and whole genome sequencing (WGS) provides a solution to this. With improved access to resources and decreasing sequencing costs, WGS has dramatically changed the research landscape revealing the genetic basis of important phenotypes such as virulence and AMR, underpinning local and national surveillance programs to understand disease epidemiology, emergence and spread, and accelerating vaccine development.
This collection is now open for submissions in Microbial Genomics. If you’d be interested in being included in the collection, please submit to our peer review system and state that your submission is intended for the ‘Microbial Genomics of Sexually Transmitted Infections’ collection.
Image credit: Odile Harrison
Collection Contents
-
-
Continuing genomic evolution of the Neisseria meningitidis cc11.2 urethritis clade, NmUC: a narrative review
More LessNeisseria meningitidis (Nm) is a bacterial pathogen responsible for invasive meningococcal disease. Though typically colonizing the nasopharynx, multiple outbreaks of meningococcal urethritis were first reported in 2015–2016; outbreaks originally presumed to be caused by Neisseria gonorrhoeae (Ng). Genomic analysis revealed that the Nm isolates causing these outbreaks were a distinct clade, and had integrated gonococcal DNA at multiple genomic sites, including the gonococcal denitrification apparatus aniA–norB, a partial gonococcal operon of five genes containing ispD, and the acetylglutamate kinase gene argB with the adjacent gonococcal locus NGO0843. The urethritis isolates had also deleted the group C capsule biosynthesis genes cssA/B/C and csc, resulting in loss of capsule. Collectively, these isolates form the N. meningitidis urethritis clade (NmUC). Genomic analysis of recent (2016–2022) NmUC isolates revealed that the genomic features have been maintained in the clade, implying that they are important for NmUC’s status as a urogenital pathogen. Furthermore, the analysis revealed the emergence of a sub-clade, designated NmUC-B, phylogenetically separated from the earlier NmUC-A. This sub-clade has integrated additional gonococcal alleles into the genome, including alleles associated with antimicrobial resistance. NmUC continues to adapt to a urethral niche and evolve as a urogenital pathogen.
-
-
-
Phenotypic and genotypic characterization of Neisseria gonorrhoeae isolates from Yaoundé, Cameroon, 2019 to 2020
This study investigated antimicrobial resistance (AMR) phenotypes and genotypes exhibited by Neisseria gonorrhoeae from Yaoundé, Cameroon. AMR to tetracycline, penicillin and ciprofloxacin was observed although none of the isolates had reduced susceptibility to azithromycin, cefixime or ceftriaxone. Whole genome sequence (WGS) data were obtained and, using a threshold of 300 or fewer locus differences in the N. gonorrhoeae core gene multilocus sequence typing (cgMLST) scheme, four distinct core genome lineages were identified. Publicly available WGS data from 1355 gonococci belonging to these four lineages were retrieved from the PubMLST database, allowing the Cameroonian isolates to be examined in the context of existing data and compared with related gonococci. Examination of AMR genotypes in this dataset found an association between the core genome and AMR with, for example, isolates belonging to the core genome group, Ng_cgc_300 : 21, possessing GyrA and ParC alleles with amino acid substitutions conferring high-level resistance to ciprofloxacin while lineages Ng_cgc_300 : 41 and Ng_cgc_300 : 243 were predicted to be susceptible to several antimicrobials. A core genome lineage, Ng_cgc_300 : 498, was observed which largely consisted of gonococci originating from Africa. Analyses from this study demonstrate the advantages of using the N. gonorrhoeae cgMLST scheme to find related gonococci to carry out genomic analyses that enhance our understanding of the population biology of this important pathogen.
-
-
-
There are three major Neisseria gonorrhoeae β-lactamase plasmid variants which are associated with specific lineages and carry distinct TEM alleles
Neisseria gonorrhoeae is a significant threat to global health with an estimated incidence of over 80 million cases each year and high levels of antimicrobial resistance. The gonococcal β-lactamase plasmid, pbla, carries the TEM β-lactamase, which requires only one or two amino acid changes to become an extended-spectrum β-lactamase (ESBL); this would render last resort treatments for gonorrhoea ineffective. Although pbla is not mobile, it can be transferred by the conjugative plasmid, pConj, found in N. gonorrhoeae . Seven variants of pbla have been described previously, but little is known about their frequency or distribution in the gonococcal population. We characterised sequences of pbla variants and devised a typing scheme, Ng_pblaST that allows their identification from whole genome short-read sequences. We implemented Ng_pblaST to assess the distribution of pbla variants in 15 532 gonococcal isolates. This demonstrated that only three pbla variants commonly circulate in gonococci, which together account for >99 % of sequences. The pbla variants carry different TEM alleles and are prevalent in distinct gonococcal lineages. Analysis of 2758 pbla-containing isolates revealed the co-occurrence of pbla with certain pConj types, indicating co-operativity between pbla and pConj variants in the spread of plasmid-mediated AMR in N. gonorrhoeae . Understanding the variation and distribution of pbla is essential for monitoring and predicting the spread of plasmid-mediated β-lactam resistance in N. gonorrhoeae .
-
-
-
Bacterium of one thousand and one variants: genetic diversity of Neisseria gonorrhoeae pathogenicity.
More LessThe bacterium Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhoea. Although diverse clinical manifestations are associated with gonorrhoea, ranging from asymptomatic through to localized and disseminated infection, very little is known about the bacterial determinants implicated in causing such different clinical symptoms. In particular, virulence factors, although defined and investigated in particular strains, often lack comprehensive analysis of their genetic diversity and how this relates to particular disease states. This review examines the clinical manifestations of gonorrhoea and discusses them in relation to disease severity and association with expression of particular virulence factors including PorB, lipooligosaccharide (LOS) and Opa, both in terms of their mechanisms of action and inter- and intra-strain variation. Particular attention is paid to phase variation as a key mechanism of genetic variation in the gonococcus and the impact of this during infection. We describe how whole-genome-sequence-based approaches that focus on virulence factors can be employed for vaccine development and discuss whether whole-genome-sequence data can be used to predict the severity of gonococcal infection.
-
-
-
Evidence of horizontal gene transfer within porB in 19 018 whole-genome Neisseria spp. isolates: a global phylogenetic analysis
The PorB porins are the major pore-forming proteins in the genus Neisseria . The trimeric PorB porins consist of 16 highly conserved transmembrane domains that form an amphipathic β-sheet connected by short periplasmic turns and eight extracellular hydrophilic loops. These loops are immunogenic and also play an important role in mediating antimicrobial influx. This study sought to (i) characterize the variations in Neisserial loop 3(355–438 bp) associated with intermediate resistance to penicillin/tetracycline and (ii) evaluate if there was evidence of horizontal gene transfer in any of the loops. We collated an integrated database consisting of 19 018 Neisseria spp. genomes – 17 882 Neisseria gonorrhoeae , 114 Neisseria meningitidis and 1022 commensal Neisseria spp. To identify the porB alleles, a gene-by-gene approach (chewBBACA) was employed. To evaluate the presence of recombination events, the Recombination Detection Programme (RDP4) was used. In total, 3885 porB alleles were detected. Paralogues were identified in 17 Neisseria isolates. Putative recombination was identified in loop regions. Intraspecies recombination among N. gonorrhoeae isolates and interspecies recombination between N. meningitidis and commensal Neisseria spp., and N. gonorrhoeae and N. lactamica were identified. Here, we present a large-scale study of 19 018 Neisseria isolates to describe recombination and variation in the porB gene. Importantly, we found putative recombination in loop regions between the pathogenic and non-pathogenic Neisseria spp. These findings suggest the need for pheno- and genotypic surveillance of antimicrobial susceptibility in commensal Neisseria spp. to prevent the emergence of AMR in the pathogenic Neisseria . This article contains data hosted by Microreact.
-
-
-
Genomic analysis of 1710 surveillance-based Neisseria gonorrhoeae isolates from the USA in 2019 identifies predominant strain types and chromosomal antimicrobial-resistance determinants
This study characterized high-quality whole-genome sequences of a sentinel, surveillance-based collection of 1710 Neisseria gonorrhoeae (GC) isolates from 2019 collected in the USA as part of the Gonococcal Isolate Surveillance Project (GISP). It aims to provide a detailed report of strain diversity, phylogenetic relationships and resistance determinant profiles associated with reduced susceptibilities to antibiotics of concern. The 1710 isolates represented 164 multilocus sequence types and 21 predominant phylogenetic clades. Common genomic determinants defined most strains’ phenotypic, reduced susceptibility to current and historic antibiotics (e.g. bla TEM plasmid for penicillin, tetM plasmid for tetracycline, gyrA for ciprofloxacin, 23S rRNA and/or mosaic mtr operon for azithromycin, and mosaic penA for cefixime and ceftriaxone). The most predominant phylogenetic clade accounted for 21 % of the isolates, included a majority of the isolates with low-level elevated MICs to azithromycin (2.0 µg ml−1), carried a mosaic mtr operon and variants in PorB, and showed expansion with respect to data previously reported from 2018. The second largest clade predominantly carried the GyrA S91F variant, was largely ciprofloxacin resistant (MIC ≥1.0 µg ml−1), and showed significant expansion with respect to 2018. Overall, a low proportion of isolates had medium- to high-level elevated MIC to azithromycin ((≥4.0 µg ml−1), based on C2611T or A2059G 23S rRNA variants). One isolate carried the penA 60.001 allele resulting in elevated MICs to cefixime and ceftriaxone of 1.0 µg ml−1. This high-resolution snapshot of genetic profiles of 1710 GC sequences, through a comparison with 2018 data (1479 GC sequences) within the sentinel system, highlights change in proportions and expansion of select GC strains and the associated genetic mechanisms of resistance. The knowledge gained through molecular surveillance may support rapid identification of outbreaks of concern. Continued monitoring may inform public health responses to limit the development and spread of antibiotic-resistant gonorrhoea.
-
-
-
The Gonococcal Genetic Island defines distinct sub-populations of Neisseria gonorrhoeae
The incidence of gonorrhoea is increasing at an alarming pace, and therapeutic options continue to narrow as a result of worsening drug resistance. Neisseria gonorrhoeae is naturally competent, allowing the organism to adapt rapidly to selection pressures including antibiotics. A sub-population of N. gonorrhoeae carries the Gonococcal Genetic Island (GGI), which encodes a type IV secretion system (T4SS) that secretes chromosomal DNA. Previous research has shown that the GGI increases transformation efficiency in vitro, but the extent to which it contributes to horizontal gene transfer (HGT) during infection is unknown. Here we analysed genomic data from clinical isolates of N. gonorrhoeae to better characterize GGI+ and GGI− sub-populations and to delineate patterns of variation at the locus itself. We found the element segregating at an intermediate frequency (61%), and it appears to act as a mobile genetic element with examples of gain, loss, exchange and intra-locus recombination within our sample. We further found evidence suggesting that GGI+ and GGI− sub-populations preferentially inhabit distinct niches with different opportunities for HGT. Previously, GGI+ isolates were reported to be associated with more severe clinical infections, and our results suggest this could be related to metal-ion trafficking and biofilm formation. The co-segregation of GGI+ and GGI− isolates despite mobility of the element suggests that both niches inhabited by N. gonorrhoeae remain important to its overall persistence as has been demonstrated previously for cervical- and urethral-adapted sub-populations. These data emphasize the complex population structure of N. gonorrhoeae and its capacity to adapt to diverse niches.
-
-
-
Increased clonality among Neisseria gonorrhoeae isolates during the COVID-19 pandemic in Amsterdam, the Netherlands
More LessDistancing measures during the COVID-19 lockdown led to a temporary decrease of casual sex partners among clients of the Centre for Sexual Health (CSH) in Amsterdam, the Netherlands. We investigated the effect of this change on the genotypic and phenotypic distribution of Neisseria gonorrhoeae (Ng) isolates from CSH patients. From each Ng-positive patient we sequenced one isolate, resulting in 322 isolates which constituted two groups: 181 isolates cultured from 15 January to 29 February 2020 (before the first lockdown) and 141 cultured from 15 May to 30 June 2020 (during the first lockdown). Patient characteristics showed significantly more symptomatic patients and significantly fewer reported sex partners during the lockdown. Phenotypic data showed an increase in low-level azithromycin resistance and ceftriaxone susceptibility during the lockdown, and this remained after the study period. The diversity in sequence types (STs) decreased slightly during the lockdown. A shift occurred from ST 8156 being predominant before lockdown to ST 9362 during lockdown and a remarkably low median SNP distance of 17 SNPs was found between ST 9362 isolates obtained during lockdown. These findings reflect restricted travel and the change in sexual behaviour of CSH clients during the lockdown, with a potentially increased local transmission of the ST 9362 strain during this period, which led to genotypic and phenotypic changes in the Ng population. This shows that public health measures have far-reaching consequences and should be considered in the surveillance of other infectious diseases.
-
-
-
Travel-associated lineages and unique endemic antimicrobial-susceptible lineages of Neisseria gonorrhoeae predominate in Western Australia
In Australia, gonococcal isolates are monitored for antimicrobial susceptibilities. In Western Australia (WA), gonorrhoea notification rates increased by 63 % between 2013 and 2016, with the steepest increase occurring between 2015 and 2016, before stabilizing at this higher baseline between 2017 and 2020. This increased prevalence was associated with antimicrobial-susceptible (AMS) lineages. To understand the provenance of these isolates causing gonorrhoea in WA, whether they were introduced or expanded from endogenous lineages, 741 isolates were collected in 2017 and characterized by both iPLEX typing and whole genome sequencing (WGS). Antibiograms and genocoding of the isolates revealed that AMS isolates were most prevalent in the remote regions, while the urban/rural regions were characterized by antimicrobial-resistant (AMR) isolates. iPLEX typing identified 78 iPLEX genotypes (WA-1 to WA-78) of which 20 accounted for over 88 % of isolates. WA-10 was the most frequently identified genotype in the urban/rural regions whilst WA-29 was the most frequently identified genotype in the remote regions. Genotypes WA-38, WA-52 and WA-13 accounted for 81 % (n=36/44) of the azithromycin-resistant N. gonorrhoeae (AziR) isolates. A representative isolate of each iPLEX genotype and AMR biotype was whole genome sequenced and analysed using MLST, NG-MAST and NG-STAR, and the novel core genome clustering Ng_cgc_400 typing scheme. Five predominant Bayesian population groups (termed BPG-1 to 5) were identified in the study collection. BPG-1 and BPG-2 were associated with AMS isolates from the remote regions. BPG-1 and BPG-2 were shown to be unique to the remote regions based on a minimum spanning tree against 4000 international isolates. AMS isolates in urban/rural regions were dominated by international lineages. AziR and Cef DS (decreased susceptibility to ceftriaxone) was concentrated in three urban/rural genomic groups (BPG-3, 4 and 5). Azithromycin minimum inhibitory concentrations (0.5–16 mg l−1) correlated with the accumulation of mtrR mutations or/and the fraction of 23S rRNA C2611T mutated copies. The majority of isolates in BPG-3, 4 and 5 could be correlated with known AMR lineages circulating globally and nationally. In conclusion, the surge in AMS isolates in WA in 2017 was due to importation of international AMS lineages into urban/rural regions, whilst the local AMS lineages persisted largely in the remote regions. Bridging between the urban/rural and remote regions was relatively rare, but continued surveillance is required to prevent ingress of AMR strains/lineages into the remote regions of WA.
-
-
-
Naturally occurring Neisseria gonorrhoeae can have large deletions in housekeeping gene abcZ, making them untypable with multilocus sequence typing
The abcZ gene is an essential housekeeping gene in all the Neisseria species. It is one of the seven genes used for multilocus sequence typing (MLST) this genus. It encodes the cytosolic component of an ATP-binding cassette (ABC) transporter complex of unknown function. We report here the finding of a strain of Neisseria gonorrhoeae with a 485 base pair deletion in the 5′ region of the abcZ gene that truncates the protein product from 636 amino acids to 89 amino acids. A second open reading frame (ORF), encoding the latter 388 amino acids of the abcZ gene, was predicted downstream. The deletion will affect MLST profiling; interrogation of genomic sequences from PubMLST revealed that this isolate is not an anomaly. Deletions in abcZ were identified in 256 Neisseria genomes, roughly 0.6% of isolates. Furthermore, these deletions could leave the abcZ gene in a pseudogenized state. Our strain, isolated from a patient with symptoms of gonorrheal infection, nevertheless behaved normal in terms of growth and in vitro phenotypic properties.
-
-
-
Target-enrichment sequencing yields valuable genomic data for challenging-to-culture bacteria of public health importance
Genomic data contribute invaluable information to the epidemiological investigation of pathogens of public health importance. However, whole-genome sequencing (WGS) of bacteria typically relies on culture, which represents a major hurdle for generating such data for a wide range of species for which culture is challenging. In this study, we assessed the use of culture-free target-enrichment sequencing as a method for generating genomic data for two bacterial species: (1) Bacillus anthracis, which causes anthrax in both people and animals and whose culture requires high-level containment facilities; and (2) Mycoplasma amphoriforme , a fastidious emerging human respiratory pathogen. We obtained high-quality genomic data for both species directly from clinical samples, with sufficient coverage (>15×) for confident variant calling over at least 80% of the baited genomes for over two thirds of the samples tested. Higher qPCR cycle threshold (Ct) values (indicative of lower pathogen concentrations in the samples), pooling libraries prior to capture, and lower captured library concentration were all statistically associated with lower capture efficiency. The Ct value had the highest predictive value, explaining 52 % of the variation in capture efficiency. Samples with Ct values ≤30 were over six times more likely to achieve the threshold coverage than those with a Ct > 30. We conclude that target-enrichment sequencing provides a valuable alternative to standard WGS following bacterial culture and creates opportunities for an improved understanding of the epidemiology and evolution of many clinically important pathogens for which culture is challenging.
-
-
-
The antimicrobial resistance landscape of Neisseria gonorrhoeae in New Zealand from November 2018 to March 2019 and the role of sexual orientation in transmission
The increasing use of culture independent diagnostic testing for the diagnosis of Neisseria gonorrhoeae infection has led to gaps in surveillance of antimicrobial resistance (AMR) rates due to limited availability of cultures. Our study reports the findings of a second national survey of N. gonorrhoeae in New Zealand, utilizing whole-genome sequencing (WGS) to study the population structure, prevalence of AMR, epidemiology and transmission of gonorrhoea isolates. We analysed 314 isolates and found a strong correlation between carriage of acquired resistance genes or chromosomal point mutations and phenotypic susceptibility testing results. Overall, the New Zealand rates of azithromycin resistance and decreased susceptibility to ceftriaxone remain lower than in most countries, which are part of the World Health Organization (WHO) Global Gonococcal Antimicrobial Surveillance Programme (GASP). The phylogeny provides evidence of a diverse population significantly associated with sexual behaviour groups. Transmission clustering with a ten single nucleotide polymorphism (SNP) cut-off identified 49 clusters, of which ten were solely associated with men who have sex with men (MSM), whereas remaining clusters included heterosexual patients, as well as MSM, suggesting that bridging of sexual networks is occurring. Utilizing pairwise SNP differences between isolates of the same sequence types we determined genetic variation for the three typing schemes used in this study [Multi locus sequence typing (MLST), multi-antigen sequence typing (NG-MAST), and sequence typing for antimicrobial resistance (NG-STAR)]. A median of 0.0 to 52.5 pairwise SNP differences within a single NG-STAR sequence type underlines previous findings of the superiority of the NG-STAR typing scheme in terms of genomic inherency. With our analysis incorporating epidemiological and genomic data, we were able to show a comprehensive overview of the N. gonorrhoeae population circulating in New Zealand, focussing on AMR and transmission within sexual networks. Regular surveillance studies to understand the origin, evolution and spread of AMR for gonorrhoea remain necessary to make informed decisions about public health guidelines, as the internationally rising rates of ceftriaxone and azithromycin resistance have already led to adaptation of current treatment guidelines in the UK and the USA, highlighting the importance of regular surveillance in individual countries.
-
-
-
Ongoing evolution of Chlamydia trachomatis lymphogranuloma venereum: exploring the genomic diversity of circulating strains
Helena M. B. Seth-Smith, Angèle Bénard, Sylvia M. Bruisten, Bart Versteeg, Björn Herrmann, Jen Kok, Ian Carter, Olivia Peuchant, Cécile Bébéar, David A. Lewis, Teresa Puerta, Darja Keše, Eszter Balla, Hana Zákoucká, Filip Rob, Servaas A. Morré, Bertille de Barbeyrac, Juan Carlos Galán, Henry J. C. de Vries, Nicholas R. Thomson, Daniel Goldenberger and Adrian EgliLymphogranuloma venereum (LGV), the invasive infection of the sexually transmissible infection (STI) Chlamydia trachomatis , is caused by strains from the LGV biovar, most commonly represented by ompA-genotypes L2b and L2. We investigated the diversity in LGV samples across an international collection over seven years using typing and genome sequencing. LGV-positive samples (n=321) from eight countries collected between 2011 and 2017 (Spain n=97, Netherlands n=67, Switzerland n=64, Australia n=53, Sweden n=37, Hungary n=31, Czechia n=30, Slovenia n=10) were genotyped for pmpH and ompA variants. All were found to contain the 9 bp insertion in the pmpH gene, previously associated with ompA-genotype L2b. However, analysis of the ompA gene shows ompA-genotype L2b (n=83), ompA-genotype L2 (n=180) and several variants of these (n=52; 12 variant types), as well as other/mixed ompA-genotypes (n=6). To elucidate the genomic diversity, whole genome sequencing (WGS) was performed from selected samples using SureSelect target enrichment, resulting in 42 genomes, covering a diversity of ompA-genotypes and representing most of the countries sampled. A phylogeny of these data clearly shows that these ompA-genotypes derive from an ompA-genotype L2b ancestor, carrying up to eight SNPs per isolate. SNPs within ompA are overrepresented among genomic changes in these samples, each of which results in an amino acid change in the variable domains of OmpA (major outer membrane protein, MOMP). A reversion to ompA-genotype L2 with the L2b genomic backbone is commonly seen. The wide diversity of ompA-genotypes found in these recent LGV samples indicates that this gene is under immunological selection. Our results suggest that the ompA-genotype L2b genomic backbone is the dominant strain circulating and evolving particularly in men who have sex with men (MSM) populations.
-
-
-
Neisseria gonorrhoeae clustering to reveal major European whole-genome-sequencing-based genogroups in association with antimicrobial resistance
Neisseria gonorrhoeae , the bacterium responsible for the sexually transmitted disease gonorrhoea, has shown an extraordinary ability to develop antimicrobial resistance (AMR) to multiple classes of antimicrobials. With no available vaccine, managing N. gonorrhoeae infections demands effective preventive measures, antibiotic treatment and epidemiological surveillance. The latter two are progressively being supported by the generation of whole-genome sequencing (WGS) data on behalf of national and international surveillance programmes. In this context, this study aims to perform N. gonorrhoeae clustering into genogroups based on WGS data, for enhanced prospective laboratory surveillance. Particularly, it aims to identify the major circulating WGS-genogroups in Europe and to establish a relationship between these and AMR. Ultimately, it enriches public databases by contributing with WGS data from Portuguese isolates spanning 15 years of surveillance. A total of 3791 carefully inspected N. gonorrhoeae genomes from isolates collected across Europe were analysed using a gene-by-gene approach (i.e. using cgMLST). Analysis of cluster composition and stability allowed the classification of isolates into a two-step hierarchical genogroup level determined by two allelic distance thresholds revealing cluster stability. Genogroup clustering in general agreed with available N. gonorrhoeae typing methods [i.e. MLST (multilocus sequence typing), NG-MAST ( N. gonorrhoeae multi-antigen sequence typing) and PubMLST core-genome groups], highlighting the predominant genogroups circulating in Europe, and revealed that the vast majority of the genogroups present a dominant AMR profile. Additionally, a non-static gene-by-gene approach combined with a more discriminatory threshold for potential epidemiological linkage enabled us to match data with previous reports on outbreaks or transmission chains. In conclusion, this genogroup assignment allows a comprehensive analysis of N. gonorrhoeae genetic diversity and the identification of the WGS-based genogroups circulating in Europe, while facilitating the assessment (and continuous monitoring) of their frequency, geographical dispersion and potential association with specific AMR signatures. This strategy may benefit public-health actions through the prioritization of genogroups to be controlled, the identification of emerging resistance carriage, and the potential facilitation of data sharing and communication.
-
-
-
Geographically structured genomic diversity of non-human primate-infecting Treponema pallidum subsp. pertenue
Benjamin Mubemba, Jan F. Gogarten, Verena J. Schuenemann, Ariane Düx, Alexander Lang, Kathrin Nowak, Kamilla Pléh, Ella Reiter, Markus Ulrich, Anthony Agbor, Gregory Brazzola, Tobias Deschner, Paula Dieguez, Anne-Céline Granjon, Sorrel Jones, Jessica Junker, Erin Wessling, Mimi Arandjelovic, Hjalmar Kuehl, Roman M. Wittig, Fabian H. Leendertz and Sébastien Calvignac-SpencerMany non-human primate species in sub-Saharan Africa are infected with Treponema pallidum subsp. pertenue , the bacterium causing yaws in humans. In humans, yaws is often characterized by lesions of the extremities and face, while T. pallidum subsp. pallidum causes venereal syphilis and is typically characterized by primary lesions on the genital, anal or oral mucosae. It remains unclear whether other T. pallidum subspecies found in humans also occur in non-human primates and how the genomic diversity of non-human primate T. pallidum subsp. pertenue lineages is distributed across hosts and space. We observed orofacial and genital lesions in sooty mangabeys (Cercocebus atys) in Taï National Park, Côte d’Ivoire and collected swabs and biopsies from symptomatic animals. We also collected non-human primate bones from 8 species in Taï National Park and 16 species from 11 other sites across sub-Saharan Africa. Samples were screened for T. pallidum DNA using polymerase chain reactions (PCRs) and we used in-solution hybridization capture to sequence T. pallidum genomes. We generated three nearly complete T. pallidum genomes from biopsies and swabs and detected treponemal DNA in bones of six non-human primate species in five countries, allowing us to reconstruct three partial genomes. Phylogenomic analyses revealed that both orofacial and genital lesions in sooty mangabeys from Taï National Park were caused by T. pallidum subsp. pertenue . We showed that T. pallidum subsp. pertenue has infected non-human primates in Taï National Park for at least 28 years and has been present in two non-human primate species that had not been described as T. pallidum subsp. pertenue hosts in this ecosystem, western chimpanzees (Pan troglodytes verus) and western red colobus (Piliocolobus badius), complementing clinical evidence that started accumulating in Taï National Park in 2014. More broadly, simian T. pallidum subsp. pertenue strains did not form monophyletic clades based on host species or the symptoms caused, but rather clustered based on geography. Geographical clustering of T. pallidum subsp. pertenue genomes might be compatible with cross-species transmission of T. pallidum subsp. pertenue within ecosystems or environmental exposure, leading to the acquisition of closely related strains. Finally, we found no evidence for mutations that confer antimicrobial resistance.
-
-
-
Genomic epidemiology and population structure of Neisseria gonorrhoeae in Norway, 2016–2017
This study presents the nationwide epidemiology of Neisseria gonorrhoeae , using whole-genome sequencing of all culture-positive cases, which comprise roughly 40 % of all cases of gonorrhea reported in Norway from 2016 to 2017. Isolates were assigned to sequence types and Bayesian analysis clusters and variation in genes coding for antibiotic resistance was linked to phenotypic resistance data. The study also included isolates taken from the same patients from different anatomical sites at one or more time points. Comparing these isolates allows for observation of patterns of infections, i.e. multiple reinfections of genetically related clones vs. reinfections of genetically distant clones, and quantification of the genomic variation of closely related isolates from samples taken from a patient within the same day. Demographically, the patients in the study could be split into two groups; one group of patients from the capital with a high proportion of men who have sex with men (MSM), and another consisting of young adults with transmission primarily between males and females from outside the capital. Some clusters of N. gonorrhoeae were restricted to one of these two demographic groups. Pairwise comparison of multiple isolates from the same patients revealed that most were reinfected with different clones. Observations of frequent reinfections in patients is a concern and should be taken into account in the development of improved information and treatment guidelines.
-
-
-
Chlamydia trachomatis: when the virulence-associated genome backbone imports a prevalence-associated major antigen signature
Chlamydia trachomatis is the most prevalent sexually transmitted bacterium worldwide and the causative agent of trachoma. Its strains are classified according to their ompA genotypes, which are strongly linked to differential tissue tropism and disease outcomes [ocular disease, urogenital disease and lymphogranuloma venereum (LGV)]. While the genome-based species phylogenetic tree presents four main clades correlating with tropism/prevalence, namely ocular, LGV, urogenital T1 (more prevalent genotypes) and urogenital T2 (less prevalent genotypes), inter-clade exchange of ompA is considered a rare phenomenon probably mediating marked tropism alterations. An LGV epidemic, associated with the clonal expansion of the L2b genotype, has emerged in the last few decades, raising concerns particularly due to its atypical clinical presentation (ulcerative proctitis) and circulation among men who have sex with men (MSM). Here, we report an LGV outbreak, mostly affecting human immunodeficiency virus-positive MSM engaging in high-risk sexual practices, caused by an L2b strain with a rather unique non-LGV ompA signature that precluded the laboratory notification of this outbreak as LGV. C. trachomatis whole-genome capture and sequencing directly from clinical samples was applied to deeply characterize the genomic backbone of this novel LGV outbreak-causing clone. It revealed a chimeric genome structure due to the genetic transfer of ompA and four neighbouring genes from a serovar D/Da strain, likely possessing the genomic backbone associated with the more prevalent urogenital genotypes (T1 clade), to an LGV (L2b) strain. The hybrid L2b/D-Da strain presents the adhesin and immunodominant antigen MOMP (major outer membrane protein) (encoded by ompA) with an epitope repertoire typical of non-invasive genital strains, while keeping the genome-dispersed virulence fingerprint of a classical LGV strain. As previously reported for inter-clade ompA exchange among non-LGV clades, this novel C. trachomatis genomic mosaic involving a contemporary epidemiologically and clinically relevant LGV strain may have implications on its transmission, tissue tropism and pathogenic capabilities. The emergence of variants with epidemic and pathogenic potential highlights the need for more focused surveillance strategies to capture C. trachomatis evolution in action.
-
-
-
Culture-independent approaches to chlamydial genomics
More LessThe expanding field of bacterial genomics has revolutionized our understanding of microbial diversity, biology and phylogeny. For most species, DNA extracted from culture material is used as the template for genome sequencing; however, the majority of microbes are actually uncultivable, and others, such as obligate intracellular bacteria, require laborious tissue culture to yield sufficient genomic material for sequencing. Chlamydiae are one such group of obligate intracellular microbes whose characterization has been hampered by this requirement. To circumvent these challenges, researchers have developed culture-independent sample preparation methods that can be applied to the sample directly or to genomic material extracted from the sample. These methods, which encompass both targeted [immunomagnetic separation-multiple displacement amplification (IMS-MDA) and sequence capture] and non-targeted approaches (host methylated DNA depletion-microbial DNA enrichment and cell-sorting-MDA), have been applied to a range of clinical and environmental samples to generate whole genomes of novel chlamydial species and strains. This review aims to provide an overview of the application, advantages and limitations of these targeted and non-targeted approaches in the chlamydial context. The methods discussed also have broad application to other obligate intracellular bacteria or clinical and environmental samples.
-