Skip to content
1887

Abstract

Two Gram-stain-negative, terminal endospore-forming, rod-shaped and aerotolerant bacterial strains designated D1-1 and B3 were isolated from soil samples of an organic paddy in Japan. Strain D1-1 grew at 15–37 °C, pH 5.0–7.3, and with up to 0.5 % (w/v) NaCl. Phylogenetic analysis of the 16S rRNA gene revealed that strain D1-1 belonged to the genus and was closely related to CSC2 (99.7 % sequence similarity), TW1 (99.7 %) and CT4 (99.3 %). Strains D1-1 and B3 were whole-genome sequenced and indistinguishable, with an average nucleotide identity value of 99.7 %. The average nucleotide identity (below 91.1 %) and digital DNA–DNA hybridization (below 43.6 %) values between the two novel isolates and their corresponding relatives showed that strains D1-1 and B3 could be readily distinguished from their closely related species. A novel species, sp. nov., with type strain D1-1 (=MAFF 212477=DSM 113523), is proposed based on genotypic and phenotypic data.

Funding
This study was supported by the:
  • NARO NIP project (Award 2022)
    • Principle Award Recipient: JunkoTazawa
  • the Genebank project (Microorganism Section) (Award 2022)
    • Principle Award Recipient: MasanoriTohno
  • JSPS KAKENHI (Award JP21K05552)
    • Principle Award Recipient: JunkoTazawa
  • JSPS KAKENHI (Award JP21K14967)
    • Principle Award Recipient: HisamiKobayashi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005876
2023-04-27
2025-01-14
Loading full text...

Full text loading...

References

  1. Prazmowski A. Untersuchung über die Entwickelungsgeschichte und Fermentwirkung einiger Bacterien-Arten. Inaugural Dissertation Hugo Voigt; Leipzig, Germany: 1880
    [Google Scholar]
  2. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44:812–826 [View Article] [PubMed]
    [Google Scholar]
  3. Lawson PA, Rainey FA. Proposal to restrict the genus Clostridium prazmowski to Clostridium butyricum and related species. Int J Syst Evol Microbiol 2016; 66:1009–1016 [View Article] [PubMed]
    [Google Scholar]
  4. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  5. Rainey FA, Hollen BJ, Small A. Genus I. Clostridium. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. New York: Springer; 2009 pp 738–828
    [Google Scholar]
  6. Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 2006; 103:626–631 [View Article] [PubMed]
    [Google Scholar]
  7. Jung MY, Park I-S, Kim W, Kim HL, Paek WK et al. Clostridium arbusti sp. nov., an anaerobic bacterium isolated from pear orchard soil. Int J Syst Evol Microbiol 2010; 60:2231–2235 [View Article] [PubMed]
    [Google Scholar]
  8. Suen JC, Hatheway CL, Steigerwalt AG, Brenner DJ. Clostridium argentinense sp. nov.: a genetically homogeneous group composed of all strains of Clostridium botulinum toxin type G and some nontoxigenic strains previously identified as Clostridium subterminale or Clostridium hastiforme. Int J Syst Bacteriol 1988; 38:375–381 [View Article]
    [Google Scholar]
  9. Inglett KS, Bae HS, Aldrich HC, Hatfield K, Ogram AV. Clostridium chromiireducens sp. nov., isolated from Cr(VI)-contaminated soil. Int J Syst Evol Microbiol 2011; 61:2626–2631 [View Article] [PubMed]
    [Google Scholar]
  10. Bernard K, Burdz T, Wiebe D, Alfa M, Bernier AM. Clostridium neonatale sp. nov. linked to necrotizing enterocolitis in neonates and a clarification of species assignable to the genus Clostridium (Prazmowski 1880) emend. Lawson and Rainey 2016. Int J Syst Evol Microbiol 2018; 68:2416–2423 [View Article] [PubMed]
    [Google Scholar]
  11. Andreesen JR, Zindel U, Durre P. Notes: Clostridium cylindrosporum (ex Barker and Beck 1942) nom. rev. Int J Syst Bacteriol 1985; 35:206–208 [View Article]
    [Google Scholar]
  12. Ueki A, Tonouchi A, Kaku N, Ueki K. Clostridium fungisolvens sp. nov., a new β-1,3-glucan-decomposing bacterium isolated from anoxic soil subjected to biological soil disinfestation. Int J Syst Evol Microbiol 2019; 71: [View Article] [PubMed]
    [Google Scholar]
  13. Honma S, Ueki A, Tonouchi A, Kaku N, Ueki K. Clostridium gelidum sp. nov., a psychrotrophic anaerobic bacterium isolated from rice field soil. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  14. Shin Y, Kang S-S, Paek J, Jin TE, Song HS et al. Clostridium kogasensis sp. nov., a novel member of the genus Clostridium, isolated from soil under a corroded gas pipeline. Anaerobe 2016; 39:14–18 [View Article] [PubMed]
    [Google Scholar]
  15. Suresh K, Prakash D, Rastogi N, Jain RK. Clostridium nitrophenolicum sp. nov., a novel anaerobic p-nitrophenol-degrading bacterium, isolated from a subsurface soil sample. Int J Syst Evol Microbiol 2007; 57:1886–1890 [View Article] [PubMed]
    [Google Scholar]
  16. Cheawchanlertfa P, Sutheeworapong S, Jenjaroenpun P, Wongsurawat T, Nookaew I et al. Clostridium manihotivorum sp. nov., a novel mesophilic anaerobic bacterium that produces cassava pulp-degrading enzymes. PeerJ 2020; 8:e10343 [View Article] [PubMed]
    [Google Scholar]
  17. Horino H, Ito M, Tonouchi A. Clostridium oryzae sp. nov., from soil of a Japanese rice field. Int J Syst Evol Microbiol 2015; 65:943–951 [View Article] [PubMed]
    [Google Scholar]
  18. Warnick TA, Methé BA, Leschine SB. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 2002; 52:1155–1160 [View Article] [PubMed]
    [Google Scholar]
  19. Keis S, Shaheen R, Jones DT. Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol 2001; 51:2095–2103 [View Article] [PubMed]
    [Google Scholar]
  20. Partansky AM, Henry BS. Anaerobic bacteria capable of the fermentation of sulfite waste liquor. J Bacteriol 1935; 30:559–571 [View Article] [PubMed]
    [Google Scholar]
  21. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. Bergey’s Manual of Determinative Bacteriology, 1st edn. Williams & Wilkins Co; Baltimore: 1923
    [Google Scholar]
  22. Chaikitkaew S, In-chan S, Singkhala A, Tukanghan W, Mamimin C et al. Clostridium thailandense sp. nov., a novel CO2-reducing acetogenic bacterium isolated from peatland soil. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  23. Båverud V, Gustafsson A, Franklin A, Aspán A, Gunnarsson A. Clostridium difficile: prevalence in horses and environment, and antimicrobial susceptibility. Equine Vet J 2003; 35:465–471 [View Article] [PubMed]
    [Google Scholar]
  24. Liesack W, Schnell S, Revsbech NP. Microbiology of flooded rice paddies. FEMS Microbiol Rev 2000; 24:625–645 [View Article] [PubMed]
    [Google Scholar]
  25. Weber S, Stubner S, Conrad R. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl Environ Microbiol 2001; 67:1318–1327 [View Article] [PubMed]
    [Google Scholar]
  26. Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 2010; 60:579–598 [View Article]
    [Google Scholar]
  27. Souza R de, Ambrosini A, Passaglia LMP. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 2015; 38:401–419 [View Article] [PubMed]
    [Google Scholar]
  28. Pahalagedara ASNW, Flint S, Palmer J, Subbaraj A, Brightwell G et al. Antimicrobial activity of soil Clostridium enriched conditioned media against Bacillus mycoides, Bacillus cereus, and Pseudomonas aeruginosa. Front Microbiol 2020; 11:608998 [View Article]
    [Google Scholar]
  29. Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG et al. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 2004; 134:320–331 [View Article] [PubMed]
    [Google Scholar]
  30. Polyanskaya LM, Vedina OT, Lysak LV, Zvyagintsev DG. The growth-promoting effect of Beijerinckia mobilis and Clostridium sp. cultures on some agricultural crops. Microbiology 2002; 71:109–115 [View Article]
    [Google Scholar]
  31. Mie A, Andersen HR, Gunnarsson S, Kahl J, Kesse-Guyot E et al. Human health implications of organic food and organic agriculture: a comprehensive review. Environ Health 2017; 16:111 [View Article] [PubMed]
    [Google Scholar]
  32. Reganold JP, Wachter JM. Organic agriculture in the twenty-first century. Nat Plants 2016; 2:15221 [View Article] [PubMed]
    [Google Scholar]
  33. Sapwarobol S, Saphyakhajorn W, Astina J. Biological functions and activities of rice bran as a functional ingredient: a review. Nutr Metab Insights 2021; 14:11786388211058560 [View Article] [PubMed]
    [Google Scholar]
  34. Nakai J, Toritsuka S. Inhibitive effect of rice bran treatment of soil surface on paddy-field weeds. J Weed Sci Tech 2009; 54:233–238 [View Article]
    [Google Scholar]
  35. Nozoe T, Miura S, Tazawa J, Uchino A. Suppressive and promotive effects of rice bran on germination of Monochoria vaginalis in organic rice (Oryza sativa L.) production. Soil Science and Plant Nutrition 2022; 68:374–382 [View Article]
    [Google Scholar]
  36. Atlas RM, Atlas RM. Handbook of Microbiological Media, 3rd ed. Boca Raton, FL: CRC Press LLC; 2004 pp 1444–1445 [View Article]
    [Google Scholar]
  37. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester, UK: John Wiley and Sons; 1991 p 115
    [Google Scholar]
  38. Kobayashi H, Tanizawa Y, Sakamoto M, Ohkuma M, Tohno M. Taxonomic status of the species Clostridium methoxybenzovorans Mechichi et al. 1999. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  39. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  40. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  41. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  42. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  43. Felsenstein J. Confidence-limits on phylogenies - an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  44. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  45. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 2014; 24:1384–1395 [View Article] [PubMed]
    [Google Scholar]
  46. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018; 34:1037–1039 [View Article] [PubMed]
    [Google Scholar]
  47. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  48. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  49. Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, Landsman D et al. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res 2021; 49:D274–D281 [View Article] [PubMed]
    [Google Scholar]
  50. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article] [PubMed]
    [Google Scholar]
  51. Tohno M, Tanizawa Y, Kojima Y, Sakamoto M, Ohkuma M et al. Lactobacillus corticis sp. nov., isolated from hardwood bark. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  52. Cosentino S, Iwasaki W. SonicParanoid: fast, accurate and easy orthology inference. Bioinformatics 2019; 35:149–151 [View Article] [PubMed]
    [Google Scholar]
  53. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  54. Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool 2014; 11:81 [View Article] [PubMed]
    [Google Scholar]
  55. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article] [PubMed]
    [Google Scholar]
  56. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  57. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  58. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  59. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  60. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  61. Kobayashi H, Tanizawa Y, Yagura M, Sakamoto M, Ohkuma M et al. Clostridium zeae sp. nov., isolated from corn silage. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  62. Sakamoto M, Suzuki M, Umeda M, Ishikawa I, Benno Y. Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 2002; 52:841–849 [View Article] [PubMed]
    [Google Scholar]
  63. Yin Q, Tao Y, Zhu X, Zhou Y, He X et al. Clostridium liquoris sp. nov., isolated from a fermentation pit used for the production of Chinese strong-flavoured liquor. Int J Syst Evol Microbiol 2016; 66:749–754 [View Article] [PubMed]
    [Google Scholar]
  64. Hunter KC, Lawson PA, Dowd SE, McLaughlin RW. Clostridium chrysemydis sp. nov., isolated from the faecal material of a painted turtle. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  65. Shin Y, Paek J, Kim H, Kook JK, Chang YH. Clostridium vitabionis sp. nov., isolated from the large intestine of a mini-pig. Int J Syst Evol Microbiol 2019; 71: [View Article] [PubMed]
    [Google Scholar]
  66. Shin Y, Paek J, Son AY, Kim H, Kook J-K et al. Clostridium composti sp. nov., a new anaerobic bacteria isolated from compost. Int J Syst Evol Microbiol 2018; 68:3869–3873 [View Article] [PubMed]
    [Google Scholar]
  67. Seo B, Jeon K, Baek I, Lee YM, Baek K et al. Clostridium fessum sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  68. Zhu H, Fu B, Lu S, Liu H, Liu H. Clostridium bovifaecis sp. nov., a novel acetogenic bacterium isolated from cow manure. Int J Syst Evol Microbiol 2018; 68:2956–2959 [View Article] [PubMed]
    [Google Scholar]
  69. Doyle DA, Smith PR, Lawson PA, Tanner RS. Clostridium muellerianum sp. nov., a carbon monoxide-oxidizing acetogen isolated from old hay. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  70. Dong Y, Liu Y, Chen N, Zhong Y, Liu L et al. Clostridium beihaiense sp. nov., an anaerobic bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2018; 68:2789–2793 [View Article] [PubMed]
    [Google Scholar]
  71. Tazawa J, Aoki D, Hayakawa H, Matsushima K, Nozoe T et al. Suppressive activity of volatile fatty acids and aromatic carboxylic acids on the germination of Monochoria vaginalis. Plant Production Science 2021; 24:505–511 [View Article]
    [Google Scholar]
  72. Smith AM, Zeeman SC, Smith SM. Starch degradation. Annu Rev Plant Biol 2005; 56:73–98 [View Article] [PubMed]
    [Google Scholar]
  73. Daou C, Zhang H. Functional and physiological properties of total, soluble, and insoluble dietary fibres derived from defatted rice bran. J Food Sci Technol 2014; 51:3878–3885 [View Article] [PubMed]
    [Google Scholar]
  74. Oliveira MDS, Feddern V, Kupski L, Cipolatti EP, Badiale-Furlong E et al. Changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour Technol 2011; 102:8335–8338 [View Article] [PubMed]
    [Google Scholar]
  75. Demain AL, Newcomb M, Wu JHD. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 2005; 69:124–154 [View Article] [PubMed]
    [Google Scholar]
  76. Chávez R, Bull P, Eyzaguirre J. The xylanolytic enzyme system from the genus Penicillium. J Biotechnol 2006; 123:413–433 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005876
Loading
/content/journal/ijsem/10.1099/ijsem.0.005876
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error