Skip to content
1887

Abstract

A Gram-stain-negative, endospore-forming, rod-shaped, indole-producing bacterial strain, designated YZC6, was isolated from fermented cabbage. Strain YZC6 grew at 10–37  °C, pH 5.5–8.5, and with up to 2  % (w/v) NaCl. The major cellular fatty acids were C and C 11 dimethyl acetal. Phylogenetic analysis of the 16S rRNA gene revealed that strain YZC6 belonged to the genus and was closely related to DSM 5434 (98.3  % sequence similarity), WM1 (98.1  %), and SPL73 (98.1  %). The average nucleotide identity based on (below 87.8  %) and digital DNA–DNA hybridization (below 36.1 %) values between the novel isolate and its corresponding relatives showed that strain YZC6 could be readily distinguished from its closely related species. Based on genotypic, phenotypic, and chemotaxonomic data, a novel species, sp. nov., was proposed, with YZC6 as the type strain (=MAFF 212518=JCM 32810=DSM 112100). This study also proposed Gundawar . 2019 as a later heterotypic synonym of (Parshina . 2003) Haas and Blanchard 2020 and Mechichi . 1999 as a later heterotypic synonym of (McClung and McCpy 1957) Haas and Blanchard 2020.

Funding
This study was supported by the:
  • Genebank project (Microorganism Section)
    • Principle Award Recipient: MasanoriTohno
  • NARO NIP project
    • Principle Award Recipient: MasanoriTohno
  • JSPS KAKENHI (Award JP21K14967)
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006456
2024-07-17
2025-01-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/7/ijsem006456.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006456&mimeType=html&fmt=ahah

References

  1. Haas KN, Blanchard JL. Reclassification of the Clostridium clostridioforme and Clostridium sphenoides clades as Enterocloster gen. nov. and Lacrimispora gen. nov., including reclassification of 15 taxa. Int J Syst Evol Microbiol 2020; 70:23–34 [View Article]
    [Google Scholar]
  2. Bouvet P, K’Ouas G, Le Coustumier A, Popoff MR. Clostridium celerecrescens, often misidentified as “Clostridium clostridioforme group,” is involved in rare human infection cases. Diagn Microbiol Infect Dis 2012; 74:299–302 [View Article] [PubMed]
    [Google Scholar]
  3. Ryskova L, Zahradnicek J, Kukla R, Bolehovska R, Vajda M et al. Dual infection of an open fracture caused by Mycobacterium setense and Clostridium celerecrescens. Antibiotics 2022; 11:1254 [View Article]
    [Google Scholar]
  4. Kwong TC, Chau ECT, Mak MCH, Choy CT, Chan LT et al. Characterization of the gut microbiome in healthy dogs and dogs with diabetes mellitus. Animals (Basel) 2023; 13:2479 [View Article] [PubMed]
    [Google Scholar]
  5. Rainey FA, Hollen BJ, Small A. Genus I Clostridium. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. eds Bergey’s Manual of Systematic Bacteriology, 2nd. edn New York: Springer; 2009 pp 738–828
    [Google Scholar]
  6. Li Z, Zhao W, Ma Y, Liang H, Wang D et al. Shifts in the bacterial community related to quality properties of vacuum-packaged peeled potatoes during storage. Foods 2022; 11:1147 [View Article] [PubMed]
    [Google Scholar]
  7. Tohno M, Kobayashi H, Nomura M, Kitahara M, Ohkuma M et al. Genotypic and phenotypic characterization of lactic acid bacteria isolated from Italian ryegrass silage. Anim Sci J 2012; 83:111–120 [View Article]
    [Google Scholar]
  8. Atlas RM, Atlas RM. Handbook of Microbiological media, 3rd. edn Boca Raton, FL, USA: CRC Press LLC; 2004 pp 1444–1445 [View Article]
    [Google Scholar]
  9. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  10. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 2022; 50:W276–W279 [View Article] [PubMed]
    [Google Scholar]
  11. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  12. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  13. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  14. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  15. Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous assemblies. Genome Biol 2018; 19:153 [View Article] [PubMed]
    [Google Scholar]
  16. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018; 34:1037–1039 [View Article] [PubMed]
    [Google Scholar]
  17. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  18. Perrin A, Rocha EPC. PanACoTA: a modular tool for massive microbial comparative genomics. NAR Genom Bioinform 2021; 3:lqaa106 [View Article] [PubMed]
    [Google Scholar]
  19. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article]
    [Google Scholar]
  20. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  21. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article]
    [Google Scholar]
  22. Liu D, Zhang Y, Fan G, Sun D, Zhang X et al. IPGA: a handy integrated prokaryotes genome and pan-genome analysis web service. Imeta 2022; 1:e55 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  24. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article]
    [Google Scholar]
  25. Cumsille A, Durán RE, Rodríguez-Delherbe A, Saona-Urmeneta V, Cámara B et al. GenoVi, an open-source automated circular genome visualizer for bacteria and archaea. PLoS Comput Biol 2023; 19:e1010998 [View Article] [PubMed]
    [Google Scholar]
  26. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  27. Kanehisa M, Sato Y. KEGG mapper for inferring cellular functions from protein sequences. Protein Sci 2020; 29:28–35 [View Article]
    [Google Scholar]
  28. Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci 2022; 31:47–53 [View Article]
    [Google Scholar]
  29. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structuresand visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  30. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 2013; 8:e77302 [View Article] [PubMed]
    [Google Scholar]
  31. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  32. Tohno M, Kitahara M, Uegaki R, Irisawa T, Ohkuma M et al. Lactobacillus hokkaidonensis sp. nov., isolated from subarctic timothy grass (Phleum pratense L.) silage. Int J Syst Evol Microbiol 2013; 63:2526–2531 [View Article] [PubMed]
    [Google Scholar]
  33. Sakamoto M, Suzuki M, Umeda M, Ishikawa I, Benno Y. Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 2002; 52:841–849 [View Article] [PubMed]
    [Google Scholar]
  34. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  37. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  38. Gundawar K, Kumari S, Sharma S, Grover V, Patil PB et al. Clostridium indicum sp. nov., a novel anaerobic bacterium isolated from the sludge of an industrial effluent. Int J Syst Evol Microbiol 2019; 69:672–678 [View Article] [PubMed]
    [Google Scholar]
  39. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article] [PubMed]
    [Google Scholar]
  40. Kobayashi H, Tanizawa Y, Sakamoto M, Ohkuma M, Tohno M. Taxonomic status of the species Clostridium methoxybenzovorans Mechichi et al. 1999. Int J Syst Evol Microbiol 2021; 71:004951 [View Article]
    [Google Scholar]
  41. Urvashi Gundawar K, Sharma S, Choksket S, Sharma M et al. Lacrimispora defluvii PI-S10-B5AT sp. nov., an obligate anaerobe, isolated from an industrial waste and reclassification of Hungatella xylanolytica as Lacrimispora xylanolytica and Clostridium indicum as Lacrimispora indica comb. nov. Curr Microbiol 2022; 79:397 [View Article] [PubMed]
    [Google Scholar]
  42. Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol 2019; 51:72–80 [View Article] [PubMed]
    [Google Scholar]
  43. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020; 83:770–803 [View Article] [PubMed]
    [Google Scholar]
  44. Williams P, Hill P, Bonev B, Chan WC. Quorum-sensing, intra- and inter-species competition in the staphylococci. Microbiology 2023; 169:001381 [View Article] [PubMed]
    [Google Scholar]
  45. Chen Y, Yang Y, Ji X, Zhao R, Li G et al. The SCIFF-derived ranthipeptides participate in quorum sensing in solventogenic Clostridia. Biotechnol J 2020; 15:e2000136 [View Article] [PubMed]
    [Google Scholar]
  46. Blekkenhorst LC, Prince RL, Ward NC, Croft KD, Lewis JR et al. Development of a reference database for assessing dietary nitrate in vegetables. Mol Nutr Food Res 2017; 61:1600982 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006456
Loading
/content/journal/ijsem/10.1099/ijsem.0.006456
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error