Fungal spotlight: Host-associated microbiomes

Fungi comprise a distinct eukaryotic lineage often associated with their important role as degraders of organic substrates in the environment. However, fungi also form well-known symbiotic association with higher plants, as mycorrhizae, or with algae as lichens. Additionally, fungi are a critical component of the environmental microbiome associated with both plants and animals. The functional role of fungi in these interactions is poorly understood. Increasingly fungi are being recognized as opportunistic pathogens of animals, including humans, and as plant pathogens, are a threat to the global supply of food. Fungi themselves may harbour their own unique microbiome or organise the microbiome of the substrate they colonise.
This collection will feature studies of fungi in host-associated microbiomes, functional analysis of host-fungal or fungal-microbe interactions, the genetic and genomic diversity of host-associated fungi, as well as the impacts of environmental fungi in natural and manmade ecosystems. It is guest edited by Professor Corby Kistler (University of Minnesota), Dr. Ferry Hagen (Westerdijk Fungal Biodiversity Institute), Dr. David Fitzpatrick (Maynooth University), and Dr. Daniel Croll (University of Neuchâtel).
Image credit: Corby Kistler (University of Minnesota), US Department of Agriculture (public domain), and Biotec, Thailand
Collection Contents
-
-
JMM Profile: Trichosporon yeasts: from superficial pathogen to threat for haematological-neutropenic patients
More LessTrichosporon yeasts are classical agents of superficial mycoses, and they are ranked as the first to second predominant basidiomycetous yeast able to cause invasive infections. The clinical presentation of Trichosporon infections varies with the affected anatomical site, with fungaemia present in the majority of invasive trichosporonosis cases. Only a limited number of antifungal compounds can be used to treat Trichosporon infections. Azoles are the first choice due to their intrinsic resistance to echinocandins. Better laboratory methods and up-to-date databases of commercial platforms are required to improve identification, susceptibility testing and surveillance of this potentially threating infection.
-
-
-
Alternaria alternata as endophyte and pathogen
More LessAlternaria alternata is a common species of fungus frequently isolated from plants as both an endophyte and a pathogen. Although the current definition of A. alternata rests on a foundation of morphological, genetic and genomic analyses, doubts persist regarding the scope of A. alternata within the genus due to the varied symbiotic interactions and wide host range observed in these fungi. These doubts may be due in large part to the history of unstable taxonomy in Alternaria, based on limited morphological characters for species delimitation and host specificity associated with toxins encoded by genes carried on conditionally dispensable chromosomes. This review explores the history of Alternaria taxonomy, focusing in particular on the use of nutritional mode and host associations in species delimitation, with the goal of evaluating A. alternata as it currently stands based on taxonomic best practice. Given the recombination detected among isolates of A. alternata, different symbiotic associations in this species should not be considered phylogenetically informative.
-
-
-
Evaluation of developing maize microbiomes and associations among nitrogen cyclers and key fungal taxa
More LessMore sustainable approaches to agriculture are urgently needed to protect existing resources and optimize crop yields and to provide food for a growing global human population. More sustainable agricultural practices that utilize plant–microbe relationships across cultivation are urgently needed. The main objectives of this study were to track the prokaryotic and fungal microbiomes associated with key growth stages of developing maize to evaluate the relationships among nitrogen cycling bacteria and major fungal genera including those known to contain arbuscular mycorrhizal fungi and other important taxa. Prokaryotic and fungal microbiomes associated with bulk soils, rhizosphere soils and tissues of developing maize were characterized using Illumina MiSeq sequencing. Similarities in microbiome diversity and abundance were compared to sample metadata to explore the influence of external factors on microbiome development. Correlations among target fungal taxa, bulk bacteria and nitrogen cycling bacteria were determined using non-parametric Spearman correlations. Important maize-associated fungal taxa were detected in all samples across growth stages, with Fusarium, Penicillium and Aspergillus fungi comprising up to 4.21, 4.26 and 0.28% of all fungal genera, respectively. Thirteen statistically significant correlations between nitrogen cycling genera and targeted fungal genera were also identified (r S≥0.70 or r S≤−0.70; P<0.05). This study is the first to note a strong positive association among several nitrifying bacteria and Fusarium (R=0.71; P=0.0046), Aspergillus (R=0.71; P=0.0055) and Cladosporium spcies (R=0.74; P=0.0038), suggesting the levels of soil nitrate, nitrite or nitrification intermediates may have large roles in the proliferation of important maize-associated fungi.
-
-
-
Characterization of microbial communities from rumen and large intestine of lactating creole goats grazing in arid plant communities
More LessArid plant communities provide variable diets that can affect digestive microbial communities of free-foraging ruminants. Thus, we used next-generation sequencing of 16S and 18S rDNA to characterize microbial communities in the rumen (regurgitated digesta) and large intestine (faeces) and diet composition of lactating creole goats from five flocks grazing in native plant communities in the Sonoran Desert in the rainy season. The bacterial communities in the rumen and large intestine of the five flocks had similar alpha diversity (Chao1, Shannon, and Simpson indices). However, bacterial community compositions were different: a bacterial community dominated by Proteobacteria in the rumen transitioned to a community dominated by Firmicutes in the large intestine. Bacterial communities of rumen were similar across flocks; similarly occurred with large-intestine communities. Archaea had a minimum presence in the goat digestive tract. We detected phylum Basidiomycota, Ascomycota, and Apicomplexa as the main fungi and protozoa. Analyses suggested different diet compositions; forbs and grasses composed the bulk of plants in the rumen and forbs and shrubs in faeces. Therefore, lactating goats consuming different diets in the Sonoran Desert in the rainy season share a similar core bacterial community in the rumen and another in the large intestine and present low archaeal communities.
-
-
-
The taxonomy of the Trichophyton rubrum complex: a phylogenomic approach
The medically relevant Trichophyton rubrum species complex has a variety of phenotypic presentations but shows relatively little genetic differences. Conventional barcodes, such as the internal transcribed spacer (ITS) region or the beta-tubulin gene, are not able to completely resolve the relationships between these closely related taxa. T. rubrum, T. soudanense and T. violaceum are currently accepted as separate species. However, the status of certain variants, including the T. rubrum morphotypes megninii and kuryangei and the T. violaceum morphotype yaoundei, remains to be deciphered. We conducted the first phylogenomic analysis of the T. rubrum species complex by studying 3105 core genes of 18 new strains from the BCCM/IHEM culture collection and nine publicly available genomes. Our analyses revealed a highly resolved phylogenomic tree with six separate clades. Trichophyton rubrum, T. violaceum and T. soudanense were confirmed in their status of species. The morphotypes T. megninii, T. kuryangei and T. yaoundei all grouped in their own respective clade with high support, suggesting that these morphotypes should be reinstituted to the species-level. Robinson-Foulds distance analyses showed that a combination of two markers (a ubiquitin-protein transferase and a MYB DNA-binding domain-containing protein) can mirror the phylogeny obtained using genomic data, and thus represent potential new markers to accurately distinguish the species belonging to the T. rubrum complex.
-
-
-
Population-level deep sequencing reveals the interplay of clonal and sexual reproduction in the fungal wheat pathogen Zymoseptoria tritici
More LessPathogens cause significant challenges to global food security. On annual crops, pathogens must re-infect from environmental sources in every growing season. Fungal pathogens have evolved mixed reproductive strategies to cope with the distinct challenges of colonizing growing plants. However, how pathogen diversity evolves during growing seasons remains largely unknown. Here, we performed a deep hierarchical sampling in a single experimental wheat field infected by the major fungal pathogen Zymoseptoria tritici. We analysed whole genome sequences of 177 isolates collected from 12 distinct cultivars replicated in space at three time points of the growing season to maximize capture of genetic diversity. The field population was highly diverse with 37 SNPs per kilobase, a linkage disequilibrium decay within 200–700 bp and a high effective population size. Using experimental infections, we tested a subset of the collected isolates on the dominant cultivar planted in the field. However, we found no significant difference in virulence of isolates collected from the same cultivar compared to isolates collected on other cultivars. About 20 % of the isolate genotypes were grouped into 15 clonal groups. Pairs of clones were disproportionally found at short distances (<5 m), consistent with experimental estimates for per-generation dispersal distances performed in the same field. This confirms predominant leaf-to-leaf transmission during the growing season. Surprisingly, levels of clonality did not increase over time in the field although reproduction is thought to be exclusively asexual during the growing season. Our study shows that the pathogen establishes vast and stable gene pools in single fields. Monitoring short-term evolutionary changes in crop pathogens will inform more durable strategies to contain diseases.
-
-
-
Candida utilis: a rare cause of septicemia in children
Candida utilis is an emerging fungal pathogen in blood. The main aim of this study was to describe the prevalence, methods of speciation and antifungal susceptibility of Candida utilis at a tertiary care centre.
Methods. This was a retrospective study carried out at a tertiary care centre in South India. Over a period of 1 year, three Candida utilis were isolated from blood culture identified by MALDI–TOF MS Version 3.2 and were confirmed by ITS sequencing. Susceptibility testing was carried out by micro broth dilution.
Results. All three patients had a common risk factor of prolonged ICU stay but the source of infection could not be identified. Candida utilis isolates were identified by MALDI–TOF and confirmed by ITS sequencing. They were pansusceptible to all tested antifungal drugs. Among these, two patients who were treated in hospital had good clinical outcome and response to antifungal drugs. A third patient was lost to follow up.
Conclusion. Candida utilis was predominantly seen between 0–3 month olds. Conventional methods of speciation were unable to identify C. utilis to species level. Rapid identification was done by MALDI–TOF MS and confirmed by sequencing. Rapid identification leads to prompt treatment and favours a good clinical outcome.
-
-
-
Is there an optimal method to detach Candida albicans biofilm from dental materials?
Introduction. Candida albicans can produce a complex, dynamic and resistant biofilm on the surface of dental materials, especially denture base acrylic resins and temporary soft liners. This biofilm is the main aetiological factor for denture stomatitis, an oral inflammatory condition characterized by chronic and diffuse erythema and oedema of the denture bearing mucosa.
Gap Statement. There is no consensus in the literature regarding the best method to detach biofilms from dental materials. In order to assess the antifungal efficacy of new materials and treatments, the biofilm needs to be properly detached and quantified.
Aim. This study compared different methods of detaching C. albicans biofilm from denture base acrylic resin (Vipi Cril) and temporary soft liner (Softone) specimens.
Methodology. Specimens of each material were immersed in an inoculum of C. albicans SC5314 and remained for 90 min in orbital agitation at 75 r.p.m. and 37 °C. After the removal of non-adherent cells, the specimens were immersed in RPMI-1640 medium for 48 h. Biofilm formation was evaluated with confocal laser scanning microscopy (n=5). Then, other specimens (n=7) were fabricated, contaminated and immersed in 3 ml of sterile phosphate-buffered saline (PBS) and vortexed or sonicated for 1, 2, 5, or 10 min to detach the biofilm. The quantification of detached biofilm was performed by colony-forming unit (c.f.u.) ml−1 count. Results were submitted to one-way analysis of variance (ANOVA)/Tukey HSD test (α=0.05).
Results. A mature and viable biofilm was observed on the surfaces of both materials. For both materials, there was no significant difference (P>0.05) among detachment methods.
Conclusion. Any of the tested methods could be used to detach C. albicans biofilm from hard and soft acrylic materials.
-
-
-
Comparative molecular evolution of chitinases in ascomycota with emphasis on mycoparasitism lifestyle
More LessChitinases are involved in multiple aspects of fungal life cycle, such as cell wall remodelling, chitin degradation and mycoparasitism lifestyle. To improve our knowledge of the chitinase molecular evolution of Ascomycota, the gene family of 72 representatives of this phylum was identified and subjected to phylogenetic, evolution trajectory and selective pressure analyses. Phylogenetic analysis showed that the chitinase gene family size and enzyme types varied significantly, along with species evolution, especially for groups B and C. In addition, two new subgroups, C3 and C4, are recognized in group C chitinases. Random birth and death testing indicated that gene expansion and contraction occurred in most of the taxa, particularly for species in the order Hypocreales (class Sordariomycetes). From an enzyme function point of view, we speculate that group A chitinases are mainly involved in species growth and development, while the expansion of genes in group B chitinases is related to fungal mycoparasitic and entomopathogenic abilities, and, to a certain extent, the expansion of genes in group C chitinases seems to be correlated with the host range broadening of some plant-pathogenic fungi in Sordariomycetes. Further selection pressure testing revealed that chitinases and the related amino acid sites were under positive selection in the evolutionary history, especially at the nodes sharing common ancestors and the terminal branches of Hypocreales. These results give a reasonable explanation for the size and function differences of chitinase genes among ascomycetes, and provide a scientific basis for understanding the evolutionary trajectories of chitinases, particularly that towards a mycoparasitic lifestyle.
-
-
-
Population genomics of transposable element activation in the highly repressive genome of an agricultural pathogen
More LessThe activity of transposable elements (TEs) can be an important driver of genetic diversity with TE-mediated mutations having a wide range of fitness consequences. To avoid deleterious effects of TE activity, some fungi have evolved highly sophisticated genomic defences to reduce TE proliferation across the genome. Repeat-induced point mutation (RIP) is a fungal-specific TE defence mechanism efficiently targeting duplicated sequences. The rapid accumulation of RIPs is expected to deactivate TEs over the course of a few generations. The evolutionary dynamics of TEs at the population level in a species with highly repressive genome defences is poorly understood. Here, we analyse 366 whole-genome sequences of Parastagonospora nodorum, a fungal pathogen of wheat with efficient RIP. A global population genomics analysis revealed high levels of genetic diversity and signs of frequent sexual recombination. Contrary to expectations for a species with RIP, we identified recent TE activity in multiple populations. The TE composition and copy numbers showed little divergence among global populations regardless of the demographic history. Miniature inverted-repeat transposable elements (MITEs) and terminal repeat retrotransposons in miniature (TRIMs) were largely underlying recent intra-species TE expansions. We inferred RIP footprints in individual TE families and found that recently active, high-copy TEs have possibly evaded genomic defences. We find no evidence that recent positive selection acted on TE-mediated mutations rather that purifying selection maintained new TE insertions at low insertion frequencies in populations. Our findings highlight the complex evolutionary equilibria established by the joint action of TE activity, selection and genomic repression.
-
-
-
Analysis of putative quadruplex-forming sequences in fungal genomes: novel antifungal targets?
More LessFungal infections cause >1 million deaths annually and the emergence of antifungal resistance has prompted the exploration for novel antifungal targets. Quadruplexes are four-stranded nucleic acid secondary structures, which can regulate processes such as transcription, translation, replication and recombination. They are also found in genes linked to virulence in microbes, and ligands that bind to quadruplexes can eliminate drug-resistant pathogens. Using a computational approach, we quantified putative quadruplex-forming sequences (PQS) in 1359 genomes across the fungal kingdom and explored their presence in genes related to virulence, drug resistance and biological processes associated with pathogenicity in Aspergillus fumigatus. Here we present the largest analysis of PQS in fungi and identify significant heterogeneity of these sequences throughout phyla, genera and species. PQS were genetically conserved in Aspergillus spp. and frequently pathogenic species appeared to contain fewer PQS than their lesser/non-pathogenic counterparts. GO-term analysis identified that PQS-containing genes were involved in processes linked with virulence such as zinc ion binding, the biosynthesis of secondary metabolites and regulation of transcription in A. fumigatus. Although the genome frequency of PQS was lower in A. fumigatus, PQS could be found enriched in genes involved in virulence, and genes upregulated during germination and hypoxia. Moreover, PQS were found in genes involved in drug resistance. Quadruplexes could have important roles within fungal biology and virulence, but their roles require further elucidation.
-
-
-
An arabinose-induced enhancement of asexual reproduction and concomitant changes in metabolic state in the filamentous fungus Bipolaris maydis
More Lessl-Arabinose, a major constituent pentose of plant cell-wall polysaccharides, has been suggested to be a less preferred carbon source for fungi but to be a potential signalling molecule that can cause distinct genome-wide transcriptional changes in fungal cells. Here, we explore the possibility that this unique pentose influences the morphological characteristics of the phytopathogenic fungus Bipolaris maydis strain HITO7711. When grown on plate media under different sugar conditions, the mycelial dry weight of cultures on l-arabinose was as low as that with no sugar, suggesting that l-arabinose does not substantially contribute to vegetative growth. However, the intensity of conidiation on l-arabinose was comparable to or even higher than that on d-glucose and on d-xylose, in contrast to the poor conidiation under the no-sugar condition. To explore the physiological basis of the passive growth and active conidiation on l-arabinose, we next investigated cellular responses of the fungus to these sugar conditions. Transcriptional analysis of genes related to carbohydrate metabolism showed that l-arabinose stimulates carbohydrate utilization through the hexose monophosphate shunt (HMP shunt), a catabolic pathway parallel to glycolysis and which participates in the generation of the reducing agent NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate). Then, the HMP shunt was impaired by disrupting the related gene BmZwf1, which encodes glucose-6-phosphate dehydrogenase in this fungus. The resulting mutants on l-arabinose showed remarkably decreased conidiation, but a conversely increased mycelial dry weight compared with the wild-type. Our study demonstrates that l-arabinose acts to enhance resource allocation to asexual reproduction in B. maydis HITO7711 at the cost of vegetative growth, and suggests that this is mediated by the concomitant stimulation of the HMP shunt.
-
-
-
Genomic epidemiology of a Cryptococcus neoformans case cluster in Glasgow, Scotland, 2018
In 2018, a cluster of two cases of cryptococcosis occurred at the Queen Elizabeth University Hospital (QEUH) in Glasgow, Scotland (UK). It was postulated that these cases may have been linked to pigeon droppings found on the hospital site, given there have been previous reports of Cryptococcus neoformans associated with pigeon guano. Although some samples of pigeon guano taken from the site yielded culturable yeast from genera related to Cryptococcus, they have since been classified as Naganishia or Papiliotrema spp., and no isolates of C. neoformans were recovered from either the guano or subsequent widespread air sampling. In an attempt to further elucidate any possible shared source of the clinical isolates, we used whole-genome sequencing and phylogenetic analysis to examine the relationship of the two Cryptococcus isolates from the QEUH cases, along with two isolates from sporadic cases treated at a different Glasgow hospital earlier in 2018. Our work demonstrated that these four clinical isolates were not clonally related; while all isolates were from the VNI global lineage and of the same mating type (MATα), the genotypes of the two QEUH isolates were separated by 1885 base changes and belonged to different sub-lineages, recently described as the intercontinental sub-clades VNIa-93 and VNIa-5. In contrast, one of the two sporadic 2018 clinical isolates was determined to belong to the VNIb sub-lineage and the other classified as a VNIV/VNI hybrid. Our work demonstrated that the two 2018 QEUH isolates and the two prior C. neoformans clinical isolates were all genetically distinct. It was not possible to determine whether the QEUH genotypes stemmed from independent sources or from the same source, i.e. pigeons carrying different genotypes, but it should be noted that whilst members of allied genera within the Tremellomycetes were isolated from the hospital environment, there were no environmental isolations of C. neoformans.
-
-
-
Genotyping and differential bacterial inhibition of Batrachochytrium dendrobatidis in threatened amphibians in Costa Rica
Amphibians have declined around the world in recent years, in parallel with the emergence of an epidermal disease called chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). This disease has been associated with mass mortality in amphibians worldwide, including in Costa Rica, and Bd is considered an important contributor to the disappearance of this group of vertebrates. While many species are susceptible to the disease, others show tolerance and manage to survive infection with the pathogen. We evaluated the pathogen Bd circulating in Costa Rica and the capacity of amphibian skin bacteria to inhibit the growth of the pathogen in vitro. We isolated and characterized – genetically and morphologically – several Bd isolates from areas with declining populations of amphibians. We determined that the circulating chytrid fungus in Costa Rica belongs to the virulent strain Bd-GPL-2, which has been related to massive amphibian deaths worldwide; however, the isolates obtained showed genetic and morphological variation. Furthermore, we isolated epidermal bacteria from 12 amphibian species of surviving populations, some in danger of extinction, and evaluated their inhibitory activity against the collection of chytrid isolates. Through bioassays we confirmed the presence of chytrid-inhibitory bacterial genera in Costa Rican amphibians. However, we observed that the inhibition varied between different isolates of the same bacterial genus, and each bacterial isolation inhibited fungal isolation differently. In total, 14 bacterial isolates belonging to the genera Stenotrophomonas , Streptomyces , Enterobacter , Pseudomonas and Klebsiella showed inhibitory activity against all Bd isolates. Given the observed variation both in the pathogen and in the bacterial inhibition capacity, it is highly relevant to include local isolates and to consider the origin of the microorganisms when performing in vivo infection tests aimed at developing and implementing mitigation strategies for chytridiomycosis.
-
-
-
Prosthetic joint infections present diverse and unique microbial communities using combined whole-genome shotgun sequencing and culturing methods
Introduction. Prosthetic joint infections (PJIs) are challenging to treat therapeutically because the infectious agents often are resistant to antibiotics and capable of abundant growth in surface-attached biofilms. Though infection rates are low, ca. 1–2 %, the overall increase in the sheer number of joint replacement surgeries results in an increase in patients at risk.
Aims. This study investigates the consensus of microbial species comprising PJI ecology, which is currently lacking.
Methodology. In this study, PJI populations from seven patients were analysed using combined culturing and whole-genome shotgun sequencing (WGSS) to establish population profiles and compare WGSS and culture methods for detection and identification of the PJI microbiome.
Results. WGSS detected strains when culture did not, notably dormant, culture-resistant and rare microbes. The CosmosID algorithm was used to predict micro-organisms present in the PJI and discriminate contaminants. However, culturing indicated the presence of microbes falling below the WGSS algorithm threshold. In these instances, microbes cultured are believed to be minor species. The two strategies were combined to build a population profile.
Conclusions. Variability between and among PJIs showed that most infections were distinct and unique. Comparative analysis of populations revealed PJIs to form clusters that were related to, but separate from, vaginal, skin and gut microbiomes. Fungi and protists were detected by WGSS, but the role of fungi is just beginning to be understood and for protists it is unknown. These micro-organisms and their novel and strain-specific microbial interactions remain to be determined in current clinical tests.
-
-
-
Detection of respiratory pathogens in clinical samples using metagenomic shotgun sequencing
Purpose. In this pilot study, we used shotgun metagenome sequencing (SMS) strategy on bronchoalveolar lavage (BAL) samples from hospitalized patients with suspected ventilate-associated pneumonia (VAP) in order to explore its potential for improving detection of ventilator-associated-pneumonia (VAP) etiology.
Methodology. In total, 67BAL samples from patients with VAP were tested with SMS strategy for detection of respiratory pathogens. Results of SMS and routine respiratory culture were compared.
Results. SMS detected all pathogens recovered by cultivation approaches. In addition, putative pathogens other than the organisms recovered by culture were detected by SMS in culture-positive samples. In 40 of 45 (89 %) culture-negative samples, a potential pathogen was detected by SMS.
Conclusion. This proof-of-concept study demonstrates that SMS is able to detect bacterial, fungal and viral organisms in BAL, including culture-negative cases.
-
-
-
Casing microbiome dynamics during button mushroom cultivation: implications for dry and wet bubble diseases
The casing material required in mushroom cultivation presents a very rich ecological niche, which is inhabited by a diverse population of bacteria and fungi. In this work three different casing materials, blonde peat, black peat and a 50 : 50 mixture of both, were compared for their capacity to show a natural suppressive response against dry bubble, Lecanicillium fungicola (Preuss) Zare and Gams, and wet bubble, Mycogone perniciosa (Magnus) Delacroix. The highest mushroom production was collected from crops cultivated using the mixed casing and black peat, which were not significantly different in yield. However, artificial infection with mycoparasites resulted in similar yield losses irrespective of the material used, indicating that the casing materials do not confer advantages in disease suppression. The composition of the microbiome of the 50 : 50 casing mixture along the crop cycle and the compost and basidiomes was evaluated through next-generation sequencing (NGS) of the V3–V4 region of the bacterial 16S rRNA gene and the fungal ITS2 region. Once colonized by Agaricus bisporus, the bacterial diversity of the casing microbiome increased and the fungal diversity drastically decreased. From then on, the composition of the casing microbiome remained relatively stable. Analysis of the composition of the bacterial microbiome in basidiomes indicated that it is highly influenced by the casing microbiota. Notably, L. fungicola was consistently detected in uninoculated control samples of compost and casing using NGS, even in asymptomatic crops. This suggests that the naturally established casing microbiota was able to help to suppress disease development when inoculum levels were low, but was not effective in suppressing high pressure from artificially introduced fungal inoculum. Determination of the composition of the casing microbiome paves the way for the development of synthetic casing communities that can be used to investigate the role of specific components of the casing microbiota in mushroom production and disease control.
-
-
-
Analysis of the Peltigera membranacea metagenome indicates that lichen-associated bacteria are involved in phosphate solubilization
More LessAlthough lichens are generally described as mutualistic symbioses of fungi and photosynthetic partners, they also harbour a diverse non-phototrophic microbiota, which is now regarded as a significant part of the symbiosis. However, the role of the non-phototrophic microbiota within the lichen is still poorly known, although possible functions have been suggested, including phosphate solubilization and various lytic activities. In the present study we focus on the bacterial biota associated with the foliose lichen Peltigera membranacea. To address our hypotheses on possible roles of the non-phototrophic microbiota, we used a metagenomic approach. A DNA library of bacterial sequence contigs was constructed from the lichen thallus material and the bacterial microbiota DNA sequence was analysed in terms of phylogenetic diversity and functional gene composition. Analysis of about 30 000 such bacterial contigs from the P. membranacea metagenome revealed significant representation of several genes involved in phosphate solubilization and biopolymer degradation.
-