Skip to content
1887

Abstract

Ocular fungal infections are pathologies of slow progression, occurring mainly in the cornea, but can also affect the entire structure of the eyeball. The main aetiological agents are species of the genera and . Both diagnosis and treatment require speed and effectiveness. However, the currently available therapy basically consists of the use of azoles and polyenes, known for their low penetration into the ocular tissue and the associated toxicity.

Thus, new strategies to combat these infections are needed, such as the development of new antifungals or the use of associations.

Thus, the compound PH151, derived from a promising class of 8-hydroxyquinolines, and natamycin, amphotericin B (AMB) and voriconazole (VRC), the main antifungals used in ocular antifungal therapy, were considered against spp. and spp.

The MICs of compound PH151 ranged from 1.0 to 16.0 µg ml, according to CLSI protocols.

The association of PH151 with AMB and VRC showed a synergistic effect for more than 50% of the strains tested.

Both the compound alone and its association (VRC-AMB-PH151) demonstrated promising potential as an antifungal agent in ocular infections, since the evaluated ocular toxicity profile was positive and the compounds presented low toxicity.

Funding
This study was supported by the:
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Award 88887670874/2022-00)
    • Principle Award Recipient: Meneghello FuentefriaAlexandre
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001952
2025-01-09
2025-01-14
Loading full text...

Full text loading...

References

  1. Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012; 2012:713687 [View Article] [PubMed]
    [Google Scholar]
  2. Reginatto P, Agostinetto G de J, Fuentefria R do N, Marinho DR, Pizzol MD et al. Eye fungal infections: a mini review. Arch Microbiol 2023; 205:236 [View Article] [PubMed]
    [Google Scholar]
  3. Cunningham C, Widder J, Raiji V. Endophthalmitis. Dis Mon 2017; 63:45–48 [View Article] [PubMed]
    [Google Scholar]
  4. Durand ML. Bacterial and fungal endophthalmitis. Clin Microbiol Rev 2017; 30:597–613 [View Article] [PubMed]
    [Google Scholar]
  5. Toumasis P, Tsantes AG, Tsiogka A, Samonis G, Vrioni G. From clinical suspicion to diagnosis: a review of diagnostic approaches and challenges in fungal keratitis. J Clin Med 2024; 13:286 [View Article] [PubMed]
    [Google Scholar]
  6. Srinivasan M. Fungal keratitis. Curr Opin Ophthalmol 2004; 15:321–327 [View Article] [PubMed]
    [Google Scholar]
  7. Słowik M, Biernat MM, Urbaniak-Kujda D, Kapelko-Słowik K, Misiuk-Hojło M. Mycotic infections of the eye. Adv Clin Exp Med 2015; 24:1113–1117 [View Article] [PubMed]
    [Google Scholar]
  8. Austin A, Lietman T, Rose-Nussbaumer J. Update on the management of infectious keratitis. Ophthalmology 2017; 124:1678–1689 [View Article] [PubMed]
    [Google Scholar]
  9. Kaur IP, Kakkar S. Topical delivery of antifungal agents. Expert Opin Drug Deliv 2010; 7:1303–1327 [View Article] [PubMed]
    [Google Scholar]
  10. Lakhani P, Patil A, Majumdar S. Challenges in the polyene- and azole-based pharmacotherapy of ocular fungal infections. J Ocul Pharmacol Ther 2019; 35:6–22 [View Article] [PubMed]
    [Google Scholar]
  11. Patil A, Majumdar S. Echinocandins in ocular therapeutics. J Ocul Pharmacol Ther 2017; 33:340–352 [View Article] [PubMed]
    [Google Scholar]
  12. Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP et al. The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 2012; 20:5678–5698 [View Article]
    [Google Scholar]
  13. Gonzalez-Lara MF, Sifuentes-Osornio J, Ostrosky-Zeichner L. Drugs in clinical development for fungal infections. Drugs 2017; 77:1505–1518 [View Article] [PubMed]
    [Google Scholar]
  14. Li L, Wu H, Wang J, Ji Z, Fang T et al. Discovery of novel 8-hydroxyquinoline derivatives with potent in vitro and in vivo antifungal activity. J Med Chem 2023; 66:23 [View Article]
    [Google Scholar]
  15. Oliveri V, Vecchio G. 8-Hydroxyquinolines in medicinal chemistry: a structural perspective. Eur J Med Chem 2016; 120:252–274 [View Article] [PubMed]
    [Google Scholar]
  16. Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. Drug Des Devel Ther 2013; 7:1157–1178 [View Article] [PubMed]
    [Google Scholar]
  17. Joaquim AR, Pippi B, de Cesare MA, Rocha DA, Boff RT et al. Rapid tools to gain insights into the interaction dynamics of new 8‐hydroxyquinolines with few fungal lines. Chem Biol Drug Des 2019; 93:1186–1196 [View Article]
    [Google Scholar]
  18. Merkel S, Pippi B, Reginatto P, Joaquim AR, Machado GRM et al. Antifungal activity of azoles, allylamines, and 8-hidroxiquinolines, alone and in combination, against Malassezia pachydermatis in vitro and in vivo. J Mycol Med 2024; 34:101475 [View Article] [PubMed]
    [Google Scholar]
  19. Pippi B, Lopes W, Reginatto P, Silva FÉK, Joaquim AR et al. New insights into the mechanism of antifungal action of 8-hydroxyquinolines. Saudi Pharm J 2019; 27:41–48 [View Article] [PubMed]
    [Google Scholar]
  20. Fuentefria AM, Pippi B, Dalla Lana DF, Donato KK, de Andrade SF. Antifungals discovery: an insight into new strategies to combat antifungal resistance. Lett Appl Microbiol 2018; 66:2–13 [View Article] [PubMed]
    [Google Scholar]
  21. Robbins N, Wright GD, Cowen LE. Antifungal Drugs: the current armamentarium and development of new agents. Microbiol Spectr 2016; 4:903–922 [View Article]
    [Google Scholar]
  22. Święciło A, Januś E, Krzepiłko A, Skowrońska M. The effect of DMSO on Saccharomyces cerevisiae yeast with different energy metabolism and antioxidant status. Sci Rep 2024; 14:21974 [View Article] [PubMed]
    [Google Scholar]
  23. Clinical and Laboratory Standards Institute Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard 3rd edition. CLSI Document M27-A3 Clinical and Laboratory Standards Institute, Wayne, PA, EUA; 2008
    [Google Scholar]
  24. Clinical and Laboratory Standards Institute Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard 2nd edn. In CLSI Document M38-A2 Clinical and Laboratory Standards Institute: Wayne, PA, EUA; 2008
    [Google Scholar]
  25. Johnson MD, MacDougall C, Ostrosky-Zeichner L, Perfect JR, Rex JH. Combination antifungal Therapy. Antimicrob Agents Chemother 2004; 48:693–715 [View Article]
    [Google Scholar]
  26. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 2003; 52:1 [View Article] [PubMed]
    [Google Scholar]
  27. Stein C, Makarewicz O, Bohnert JA, Pfeifer Y, Kesselmeier M et al. Three dimensional checkerboard synergy analysis of colistin, meropenem, tigecycline against multidrug-resistant clinical Klebsiella pneumonia isolates. PLOS ONE 2015; 10:e0126479 [View Article] [PubMed]
    [Google Scholar]
  28. Nikkhah M, Hashemi M, Habibi Najafi MB, Farhoosh R. Synergistic effects of some essential oils against fungal spoilage on pear fruit. Int J Food Microbiol 2017; 257:285–294 [View Article] [PubMed]
    [Google Scholar]
  29. O’Shaughnessy EM, Meletiadis J, Stergiopoulou T, Demchok JP, Walsh TJ. Antifungal interactions within the triple combination of amphotericin B, caspofungin and voriconazole against Aspergillus species. J Antimicrob Chemother 2006; 58:1168–1176 [View Article] [PubMed]
    [Google Scholar]
  30. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVMA) The Hen's Egg Test–Chorioallantoic Membrane (HET-CAM) Test Method. Research Triangle Park: National Toxicology Program; 2010
  31. Lagarto A, Vega R, Guerra I, González R. In vitro quantitative determination of ophthalmic irritancy by the chorioallantoic membrane test with trypan blue staining as alternative to eye irritation test. Toxicol In Vitro 2006; 20:699–702 [View Article] [PubMed]
    [Google Scholar]
  32. Lindner T, Klose R, Streckenbach F, Stahnke T, Hadlich S et al. Morphologic and biometric evaluation of chick embryo eyes in ovo using 7 Tesla MRI. Sci Rep 2017; 7:2647 [View Article] [PubMed]
    [Google Scholar]
  33. Schreiber S, Mahmoud A, Vuia A, Rübbelke MK, Schmidt E et al. Reconstructed epidermis versus human and animal skin in skin absorption studies. Toxicol In Vitro 2005; 19:813–822 [View Article] [PubMed]
    [Google Scholar]
  34. Nava G, Piñón E, Mendoza L, Mendoza N, Quintanar D et al. Formulation and in Vitro, ex Vivo and in Vivo evaluation of elastic liposomes for transdermal delivery of ketorolac tromethamine. Pharmaceutics 2011; 3:954–970 [View Article] [PubMed]
    [Google Scholar]
  35. Brasil. Ministério da Agricultura. Instrução Normativa nº 3/2000 Aprova Regulamento Técnico de Métodos de Insensibilização Para Abate Humanitário de Animais de Açougue; 2013
  36. Mehrandish S, Mirzaeei S. A review on ocular novel drug delivery systems of antifungal drugs: functional evaluation and comparison of conventional and novel dosage forms. Adv Pharm Bull 2021; 11:28–38 [View Article] [PubMed]
    [Google Scholar]
  37. Czakó C, Sándor G, Popper-Sachetti A, Horváth H, Kovács I et al. Fusarium és sarocladium okozta fertőzések szemészeti vonatkozásai és azok kezelése. Orv Hetil 2019; 160:2–11 [View Article]
    [Google Scholar]
  38. Chang YL, Yu SJ, Heitman J, Wellington M, Chen YL. New facets of antifungal therapy. Virulence 2017; 8:222–236 [View Article] [PubMed]
    [Google Scholar]
  39. Cui J, Ren B, Tong Y, Dai H, Zhang L. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence 2015; 6:362–371 [View Article] [PubMed]
    [Google Scholar]
  40. Ramage G, Wickes BL, López-Ribot JL. Inhibition on Candida albicans biofilm formation using divalent cation chelators (EDTA). Mycopathologia 2007; 164:301–306 [View Article] [PubMed]
    [Google Scholar]
  41. Thompson GR, Lewis JS. Pharmacology and clinical use of voriconazole. Expert Opin Drug Metab Toxicol 2010; 6:83–94 [View Article]
    [Google Scholar]
  42. Kristanc L, Božič B, Jokhadar ŠZ, Dolenc MS, Gomišček G. The pore-forming action of polyenes: from model membranes to living organisms. Biochim Biophys Acta Biomembr 2019; 1861:418–430 [View Article] [PubMed]
    [Google Scholar]
  43. te Welscher YM, ten Napel HH, Balagué MM, Souza CM, Riezman H et al. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J Biol Chem 2008; 283:6393–6401 [View Article]
    [Google Scholar]
  44. De Cremer K, Staes I, Delattin N, Cammue BPA, Thevissen K et al. Combinatorial drug approaches to tackle Candida albicans biofilms. Expert Rev Anti Infect Ther 2015; 13:973–984 [View Article] [PubMed]
    [Google Scholar]
  45. de Oliveira DS. Interação medicamentosa: parte II. Caderno de Farmácia 1986; 2:97–110
    [Google Scholar]
  46. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Rev Dis Primers 2018; 4:18026 [View Article] [PubMed]
    [Google Scholar]
  47. Müller GG, Kara-José N, Castro RS de. Antifúngicos em infecções oculares: drogas e vias de administração. Rev bras.oftalmol 2013; 72:132–141 [View Article]
    [Google Scholar]
  48. Thomas PA. Current perspectives on ophthalmic mycoses. Clin Microbiol Rev 2003; 16:730–797 [View Article] [PubMed]
    [Google Scholar]
  49. Pippi B, Joaquim AR, Merkel S, Zanette RA, Nunes MEM et al. Antifungal activity and toxicological parameters of 8-hydroxyquinoline-5-sulfonamides using alternative animal models. J Appl Microbiol 2021; 130:1925–1934 [View Article] [PubMed]
    [Google Scholar]
  50. Rauchman SH, Locke B, Albert J, De Leon J, Peltier MR et al. Toxic external exposure leading to ocular surface injury. Vision 2023; 7:32 [View Article] [PubMed]
    [Google Scholar]
  51. Raies AB, Bajic VB. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci 2016; 6:147–172 [View Article] [PubMed]
    [Google Scholar]
  52. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVMA) Bovine Corneal Opacity and Permeability Test Method for Identifying i) Chemicals Inducing Serious Eye Damage and ii) Chemicals Not Requiring Classification for Eye Irritation or Serious Eye Damage, OECD Guidelines for the Testing of Chemicals, Section 4; 2017
  53. Reginatto P, Agostinetto G de J, Teixeira ML, de Andrade SF, Fuentefria AM. Synergistic activity of clioquinol with voriconazole and amphotericin B against fungi of interest in eye infections. J Mycol Med 2024; 34:101462 [View Article] [PubMed]
    [Google Scholar]
  54. Kalkanci A, Ozdek S. Ocular fungal infections. Curr Eye Res 2011; 36:179–189 [View Article]
    [Google Scholar]
  55. Oliveira AGL, Silva RS, Alves EM, Presgrave RF, Presgrave OAF et al. Chorioallantoic membrane assays (HET-CAM and CAM-TBS): alternative tests for performing toxicological evaluation of products with low potential for ocular irritation. Rev Inst Adolfo Lutz 2012; 71:153–159 [View Article]
    [Google Scholar]
  56. Ballatori N, Villalobos AR. Defining the molecular and cellular basis of toxicity using comparative models. Toxicol Appl Pharmacol 2002; 183:207–220 [View Article] [PubMed]
    [Google Scholar]
  57. Arboleda AMD, Ta CN. Overview of mycotic keratitis. Cornea 2024; 43:1065–1071 [View Article]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.001952
Loading
/content/journal/jmm/10.1099/jmm.0.001952
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error