Skip to content
1887

Abstract

Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus–host interaction during this pivotal stage of infection. Central to this process is the HIV capsid. The last 10 years have seen a transformation in the way we understand HIV capsid structure and function. We review key discoveries and present our latest thoughts on the capsid as a dynamic regulator of innate immune evasion and chromatin targeting. We also consider the accessory proteins Vpr and Vpx because they are incorporated into particles where they collaborate with capsids to manipulate defensive cellular responses to infection. We argue that effective regulation of capsid uncoating and evasion of innate immunity define pandemic potential and viral pathogenesis, and we review how comparison of different HIV lineages can reveal what makes pandemic lentiviruses special.

Keyword(s): capsid , cofactors , HIV , innate immunity , Vpr and Vpx
Funding
This study was supported by the:
  • University College London (Award COVID-19 fund)
    • Principle Award Recipient: J. TowersGreg
  • Medical Research Council (Award MR/Y004205/1)
    • Principle Award Recipient: J. TowersGreg
  • Medical Research Council (Award MR/W005611/1)
    • Principle Award Recipient: J. TowersGreg
  • Medical Research Council (Award MR/S023380/1)
    • Principle Award Recipient: J. TowersGreg
  • Rosetrees Trust (Award ID2020/100020)
    • Principle Award Recipient: J. TowersGreg
  • Wellcome Trust (Award 214344)
    • Principle Award Recipient: J. TowersGreg
  • Wellcome Trust (Award 220863)
    • Principle Award Recipient: J. TowersGreg
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.002057
2025-01-13
2025-01-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/106/1/jgv002057.html?itemId=/content/journal/jgv/10.1099/jgv.0.002057&mimeType=html&fmt=ahah

References

  1. Malim MH, Bieniasz PD. HIV Restriction Factors and Mechanisms of Evasion. Cold Spring Harb Perspect Med 2012; 2:a006940 [View Article] [PubMed]
    [Google Scholar]
  2. Marini B, Kertesz-Farkas A, Ali H, Lucic B, Lisek K et al. Nuclear architecture dictates HIV-1 integration site selection. Nature 2015; 521:227–231 [View Article] [PubMed]
    [Google Scholar]
  3. Schröder ARW, Shinn P, Chen H, Berry C, Ecker JR et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110:521–529 [View Article] [PubMed]
    [Google Scholar]
  4. Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL et al. HIV-1 capsid-cyclophilin interactions determine nuclear import pathway Integration Targeting and Replication Efficiency. PLoS Pathog 2011; 7:e1002439 [View Article]
    [Google Scholar]
  5. Sowd GA, Serrao E, Wang H, Wang W, Fadel HJ et al. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc Natl Acad Sci U S A 2016; 113:E1054–E1063 [View Article] [PubMed]
    [Google Scholar]
  6. Maertens G, Cherepanov P, Pluymers W, Busschots K, De Clercq E et al. LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 2003; 278:33528–33539 [View Article] [PubMed]
    [Google Scholar]
  7. Nikolaitchik OA, Islam S, Kitzrow JP, Duchon A, Cheng Z et al. HIV-1 usurps transcription start site heterogeneity of host RNA polymerase II to maximize replication fitness. Proc Natl Acad Sci U S A 2023; 120:e2305103120 [View Article] [PubMed]
    [Google Scholar]
  8. Friedman J, Cho W-K, Chu CK, Keedy KS, Archin NM et al. Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. J Virol 2011; 85:9078–9089 [View Article] [PubMed]
    [Google Scholar]
  9. Ruelas DS, Greene WC. An integrated overview of HIV-1 latency. Cell 2013; 155:519–529 [View Article] [PubMed]
    [Google Scholar]
  10. Chougui G, Margottin-Goguet F. HUSH, a link between intrinsic immunity and HIV latency. Front Microbiol 2019; 10:224 [View Article] [PubMed]
    [Google Scholar]
  11. Romani B, Allahbakhshi E. Underlying mechanisms of HIV-1 latency. Virus Genes 2017; 53:329–339 [View Article] [PubMed]
    [Google Scholar]
  12. Romani B, Kamali Jamil R, Hamidi-Fard M, Rahimi P, Momen SB et al. HIV-1 Vpr reactivates latent HIV-1 provirus by inducing depletion of class I HDACs on chromatin. Sci Rep 2016; 6:31924 [View Article] [PubMed]
    [Google Scholar]
  13. Fassati A, Goff SP. Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J Virol 2001; 75:3626–3635 [View Article] [PubMed]
    [Google Scholar]
  14. Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 2013; 503:402–405 [View Article] [PubMed]
    [Google Scholar]
  15. Hilditch L, Towers GJ. A model for cofactor use during HIV-1 reverse transcription and nuclear entry. Curr Opin Virol 2014; 4:32–36 [View Article] [PubMed]
    [Google Scholar]
  16. Gao D, Wu J, Wu Y-T, Du F, Aroh C et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 2013; 341:903–906 [View Article] [PubMed]
    [Google Scholar]
  17. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013; 339:786–791 [View Article] [PubMed]
    [Google Scholar]
  18. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G et al. cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING. Nature 2013; 498:380–384 [View Article] [PubMed]
    [Google Scholar]
  19. Wu J, Sun L, Chen X, Du F, Shi H et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013; 339:826–830 [View Article] [PubMed]
    [Google Scholar]
  20. Sumner RP, Harrison L, Touizer E, Peacock TP, Spencer M et al. Disrupting HIV-1 capsid formation causes cGAS sensing of viral DNA. EMBO J 2020; 39:e103958 [View Article] [PubMed]
    [Google Scholar]
  21. Eschbach JE, Puray-Chavez M, Mohammed S, Wang Q, Xia M et al. HIV-1 capsid stability and reverse transcription are finely balanced to minimize sensing of reverse transcription products via the cGAS-STING pathway. mBio 2024; 15:e0034824 [View Article] [PubMed]
    [Google Scholar]
  22. Sumner RP, Blest H, Lin M, Maluquer de Motes C, Towers GJ. HIV-1 with gag processing defects activates cGAS sensing. Retrovirology 2024; 21:10 [View Article] [PubMed]
    [Google Scholar]
  23. Kumar S, Morrison JH, Dingli D, Poeschla E. HIV-1 activation of innate immunity depends strongly on the intracellular level of TREX1 and sensing of incomplete reverse transcription product. J Virol 2018; 92: [View Article]
    [Google Scholar]
  24. Papa G, Albecka A, Mallery D, Vaysburd M, Renner N et al. IP6-stabilised HIV capsids evade cGAS/STING-mediated host immune sensing. EMBO Rep 2023; 24:e56275 [View Article] [PubMed]
    [Google Scholar]
  25. Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 2010; 11:1005–1013 [View Article] [PubMed]
    [Google Scholar]
  26. Davids B-O, Balasubramaniam M, Sapp N, Prakash P, Ingram S et al. Human three prime repair exonuclease 1 promotes HIV-1 integration by preferentially degrading unprocessed viral DNA. J Virol 2021; 95:e0055521 [View Article] [PubMed]
    [Google Scholar]
  27. Prakash P, Khodke P, Balasubramaniam M, Davids B-O, Hollis T et al. Three prime repair exonuclease 1 preferentially degrades the integration-incompetent HIV-1 DNA through favorable kinetics, thermodynamic, structural, and conformational properties. J Biol Chem 2024; 300:107438 [View Article] [PubMed]
    [Google Scholar]
  28. Kim K, Dauphin A, Komurlu S, McCauley SM, Yurkovetskiy L et al. Cyclophilin A protects HIV-1 from restriction by human TRIM5α. Nat Microbiol 2019; 4:2044–2051 [View Article]
    [Google Scholar]
  29. Selyutina A, Persaud M, Simons LM, Bulnes-Ramos A, Buffone C et al. Cyclophilin A prevents HIV-1 restriction in lymphocytes by blocking human TRIM5α binding to the viral core. Cell Reports 2020; 30:3766–3777 [View Article]
    [Google Scholar]
  30. Ni T, Gerard S, Zhao G, Dent K, Ning J et al. Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A. Nat Struct Mol Biol 2020; 27:855–862 [View Article] [PubMed]
    [Google Scholar]
  31. Kreysing JP, Heidari M, Zila V, Cruz-Leon S, Obarska-Kosinska A et al. Passage of the HIV capsid cracks the nuclear pore. BiophysicsbioRxiv [View Article]
    [Google Scholar]
  32. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004; 427:848–853 [View Article] [PubMed]
    [Google Scholar]
  33. Wilson SJ, Webb BLJ, Ylinen LMJ, Verschoor E, Heeney JL et al. Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc Natl Acad Sci USA 2008; 105:3557–3562 [View Article]
    [Google Scholar]
  34. Sawyer SL, Wu LI, Emerman M, Malik HS. Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 2005; 102:2832–2837 [View Article]
    [Google Scholar]
  35. Song B, Javanbakht H, Perron M, Park DH, Stremlau M et al. Retrovirus restriction by TRIM5α variants from Old World and New World primates. J Virol 2005; 79:3930–3937 [View Article]
    [Google Scholar]
  36. Sayah DM, Sokolskaja E, Berthoux L, Luban J. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 2004; 430:569–573 [View Article] [PubMed]
    [Google Scholar]
  37. Stremlau M, Perron M, Welikala S, Sodroski J. Species-specific variation in the B30.2(SPRY) domain of TRIM5α determines the potency of human immunodeficiency virus restriction. J Virol 2005; 79:3139–3145 [View Article]
    [Google Scholar]
  38. Yap MW, Nisole S, Stoye JP. A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol 2005; 15:73–78 [View Article] [PubMed]
    [Google Scholar]
  39. Ohkura S, Yap MW, Sheldon T, Stoye JP. All three variable regions of the TRIM5alpha B30.2 domain can contribute to the specificity of retrovirus restriction. J Virol 2006; 80:8554–8565 [View Article] [PubMed]
    [Google Scholar]
  40. Maillard PV, Reynard S, Serhan F, Turelli P, Trono D. Interfering residues narrow the spectrum of MLV restriction by human TRIM5alpha. PLoS Pathog 2007; 3:e200 [View Article] [PubMed]
    [Google Scholar]
  41. Ganser-Pornillos BK, Chandrasekaran V, Pornillos O, Sodroski JG, Sundquist WI et al. Hexagonal assembly of a restricting TRIM5alpha protein. Proc Natl Acad Sci U S A 2011; 108:534–539 [View Article] [PubMed]
    [Google Scholar]
  42. Li Y-L, Chandrasekaran V, Carter SD, Woodward CL, Christensen DE et al. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. eLife 2016; 5: [View Article]
    [Google Scholar]
  43. Li X, Sodroski J. The TRIM5alpha B-box 2 domain promotes cooperative binding to the retroviral capsid by mediating higher-order self-association. J Virol 2008; 82:11495–11502 [View Article] [PubMed]
    [Google Scholar]
  44. Fletcher AJ, Vaysburd M, Maslen S, Zeng J, Skehel JM et al. Trivalent RING assembly on retroviral capsids activates TRIM5 ubiquitination and innate immune signaling. Cell Host Microbe 2018; 24:761–775 [View Article] [PubMed]
    [Google Scholar]
  45. Pertel T, Hausmann S, Morger D, Züger S, Guerra J et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 2011; 472:361–365 [View Article] [PubMed]
    [Google Scholar]
  46. Kutluay SB, Perez-Caballero D, Bieniasz PD. Fates of retroviral core components during unrestricted and TRIM5-restricted infection. PLoS Pathog 2013; 9:e1003214 [View Article]
    [Google Scholar]
  47. Wu X, Anderson JL, Campbell EM, Joseph AM, Hope TJ. Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection. Proc Natl Acad Sci USA 2006; 103:7465–7470 [View Article]
    [Google Scholar]
  48. Fletcher AJ, Christensen DE, Nelson C, Tan CP, Schaller T et al. TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription. The EMBO Journal 2015; 34:2078–2095 [View Article]
    [Google Scholar]
  49. Jimenez-Guardeño JM, Apolonia L, Betancor G, Malim MH. Immunoproteasome activation enables human TRIM5α restriction of HIV-1. Nat Microbiol 2019; 4:933–940 [View Article]
    [Google Scholar]
  50. Selyutina A, Simons LM, Kirby KA, Bulnes-Ramos A, Hu P et al. TRIM5α restriction of HIV-1-N74D viruses in lymphocytes is caused by a loss of Cyclophilin A protection. Viruses 2022; 14:363 [View Article] [PubMed]
    [Google Scholar]
  51. Osega CE, Bustos FJ, Arriagada G. From entry to the nucleus: how retroviruses commute. Annu Rev Virol 2024; 11:89–104 [View Article] [PubMed]
    [Google Scholar]
  52. Huang P-T, Summers BJ, Xu C, Perilla JR, Malikov V et al. FEZ1 is recruited to a conserved cofactor site on capsid to promote HIV-1 trafficking. Cell Reports 2019; 28:2373–2385 [View Article]
    [Google Scholar]
  53. Malikov V, da Silva ES, Jovasevic V, Bennett G, de Souza Aranha Vieira DA et al. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. Nat Commun 2015; 6:6660 [View Article] [PubMed]
    [Google Scholar]
  54. Carnes SK, Zhou J, Aiken C. HIV-1 engages a dynein-dynactin-BICD2 complex for infection and transport to the nucleus. J Virol 2018; 92:00358–18 [View Article] [PubMed]
    [Google Scholar]
  55. Dharan A, Opp S, Abdel-Rahim O, Keceli SK, Imam S et al. Bicaudal D2 facilitates the cytoplasmic trafficking and nuclear import of HIV-1 genomes during infection. Proc Natl Acad Sci U S A 2017; 114:E10707–E10716 [View Article] [PubMed]
    [Google Scholar]
  56. Dharan A, Talley S, Tripathi A, Mamede JI, Majetschak M et al. KIF5B and Nup358 cooperatively mediate the nuclear import of HIV-1 during infection. PLoS Pathog 2016; 12:e1005700 [View Article] [PubMed]
    [Google Scholar]
  57. Yamashita M, Emerman M. Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J Virol 2004; 78:5670–5678 [View Article] [PubMed]
    [Google Scholar]
  58. Yamashita M, Perez O, Hope TJ, Emerman M. Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells. PLoS Pathog 2007; 3:1502–1510 [View Article] [PubMed]
    [Google Scholar]
  59. Briggs JAG, Wilk T, Welker R, Kräusslich H-G, Fuller SD. Structural organization of authentic, mature HIV-1 virions and cores. EMBO J 2003; 22:1707–1715 [View Article] [PubMed]
    [Google Scholar]
  60. von Appen A, Kosinski J, Sparks L, Ori A, DiGuilio AL et al. In situ structural analysis of the human nuclear pore complex. Nature 2015; 526:140–143 [View Article]
    [Google Scholar]
  61. Zila V, Margiotta E, Turoňová B, Müller TG, Zimmerli CE et al. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell 2021; 184:1032–1046 [View Article] [PubMed]
    [Google Scholar]
  62. Bejarano DA, Peng K, Laketa V, Börner K, Jost KL et al. HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex. eLife 2019; 8: [View Article]
    [Google Scholar]
  63. Selyutina A, Persaud M, Lee K, KewalRamani V, Diaz-Griffero F. Nuclear import of the HIV-1 core precedes reverse transcription and uncoating. Cell Reports 2020; 32:108201 [View Article]
    [Google Scholar]
  64. Schifferdecker S, Zila V, Müller TG, Sakin V, Anders-Össwein M et al. Direct capsid labeling of infectious HIV-1 by genetic code expansion allows detection of largely complete nuclear capsids and suggests nuclear entry of HIV-1 complexes via common routes. mBio 2022; 13:e0195922 [View Article] [PubMed]
    [Google Scholar]
  65. Dharan A, Bachmann N, Talley S, Zwikelmaier V, Campbell EM. Nuclear pore blockade reveals that HIV-1 completes reverse transcription and uncoating in the nucleus. Nat Microbiol 2020; 5:1088–1095 [View Article] [PubMed]
    [Google Scholar]
  66. Peng K, Muranyi W, Glass B, Laketa V, Yant SR et al. Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid. Elife 2014; 3:e04114 [View Article] [PubMed]
    [Google Scholar]
  67. Zila V, Müller TG, Laketa V, Müller B, Kräusslich H-G. Analysis of CA content and CPSF6 dependence of early HIV-1 replication complexes in SupT1-R5 cells. mBio 2019; 10:e02501-19 [View Article] [PubMed]
    [Google Scholar]
  68. Burdick RC, Li C, Munshi M, Rawson JMO, Nagashima K et al. HIV-1 uncoats in the nucleus near sites of integration. Proc Natl Acad Sci U S A 2020; 117:5486–5493 [View Article] [PubMed]
    [Google Scholar]
  69. Li C, Burdick RC, Nagashima K, Hu W-S, Pathak VK. HIV-1 cores retain their integrity until minutes before uncoating in the nucleus. Proc Natl Acad Sci USA 2021; 118: [View Article]
    [Google Scholar]
  70. Müller TG, Zila V, Peters K, Schifferdecker S, Stanic M et al. HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells. eLife 2021; 10: [View Article]
    [Google Scholar]
  71. Akey CW, Singh D, Ouch C, Echeverria I, Nudelman I et al. Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell 2022; 185:361–378 [View Article]
    [Google Scholar]
  72. Mosalaganti S, Obarska-Kosinska A, Siggel M, Taniguchi R, Turoňová B et al. AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science 2022; 376:eabm9506 [View Article] [PubMed]
    [Google Scholar]
  73. Petrovic S, Samanta D, Perriches T, Bley CJ, Thierbach K et al. Architecture of the linker-scaffold in the nuclear pore. Science 2022; 376:eabm9798 [View Article]
    [Google Scholar]
  74. Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W et al. Integrative structure and functional anatomy of a nuclear pore complex. Nature 2018; 555:475–482 [View Article]
    [Google Scholar]
  75. Hampoelz B, Andres-Pons A, Kastritis P, Beck M. Structure and assembly of the nuclear pore complex. Annu Rev Biophys 2019; 48:515–536 [View Article]
    [Google Scholar]
  76. Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307–328 [View Article] [PubMed]
    [Google Scholar]
  77. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008; 319:921–926 [View Article] [PubMed]
    [Google Scholar]
  78. Christ F, Thys W, De Rijck J, Gijsbers R, Albanese A et al. Transportin-SR2 imports HIV into the nucleus. Curr Biol 2008; 18:1192–1202 [View Article] [PubMed]
    [Google Scholar]
  79. König R, Zhou Y, Elleder D, Diamond TL, Bonamy GMC et al. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 2008; 135:49–60 [View Article] [PubMed]
    [Google Scholar]
  80. Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A et al. Flexible use of nuclear import pathways by HIV-1. Cell Host & Microbe 2010; 7:221–233 [View Article]
    [Google Scholar]
  81. Maertens GN, Cook NJ, Wang W, Hare S, Gupta SS et al. Structural basis for nuclear import of splicing factors by human Transportin 3. Proc Natl Acad Sci U S A 2014; 111:2728–2733 [View Article] [PubMed]
    [Google Scholar]
  82. Dickson CF, Hertel S, Tuckwell AJ, Li N, Ruan J et al. The HIV capsid mimics karyopherin engagement of FG-nucleoporins. Nature 2024; 626:836–842 [View Article] [PubMed]
    [Google Scholar]
  83. Fu L, Weiskopf EN, Akkermans O, Swanson NA, Cheng S et al. HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor. Nature 2024; 626:843–851 [View Article]
    [Google Scholar]
  84. Matreyek KA, Yücel SS, Li X, Engelman A. Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog 2013; 9:e1003693 [View Article]
    [Google Scholar]
  85. Buffone C, Martinez-Lopez A, Fricke T, Opp S, Severgnini M et al. Nup153 unlocks the nuclear pore complex for HIV-1 nuclear translocation in nondividing cells. J Virol 2018; 92: [View Article]
    [Google Scholar]
  86. Kane M, Rebensburg SV, Takata MA, Zang TM, Yamashita M et al. Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2. Elife 2018; 7:e35738 [View Article] [PubMed]
    [Google Scholar]
  87. Müller TG, Zila V, Müller B, Kräusslich H-G. Nuclear capsid uncoating and reverse transcription of HIV-1. Annu Rev Virol 2022; 9:261–284 [View Article] [PubMed]
    [Google Scholar]
  88. Achuthan V, Perreira JM, Sowd GA, Puray-Chavez M, McDougall WM et al. Capsid-CPSF6 interaction licenses nuclear HIV-1 trafficking to sites of viral DNA integration. Cell Host Microbe 2018; 24:392–404 [View Article] [PubMed]
    [Google Scholar]
  89. Chin CR, Perreira JM, Savidis G, Portmann JM, Aker AM et al. Direct visualization of HIV-1 replication intermediates shows that capsid and CPSF6 modulate HIV-1 intra-nuclear invasion and integration. Cell Rep 2015; 13:1717–1731 [View Article] [PubMed]
    [Google Scholar]
  90. Márquez CL, Lau D, Walsh J, Shah V, McGuinness C et al. Kinetics of HIV-1 capsid uncoating revealed by single-molecule analysis. Elife 2018; 7:e34772 [View Article] [PubMed]
    [Google Scholar]
  91. Faysal KR, Walsh JC, Renner N, Márquez CL, Shah VB et al. n.d. Pharmacologic hyperstabilisation of the HIV-1 capsid lattice induces capsid failure. eLife 13: [View Article]
    [Google Scholar]
  92. Christensen DE, Ganser-Pornillos BK, Johnson JS, Pornillos O, Sundquist WI. Reconstitution and visualization of HIV-1 capsid-dependent replication and integration in vitro. Science 2020; 370: [View Article]
    [Google Scholar]
  93. Price AJ, Jacques DA, McEwan WA, Fletcher AJ, Essig S et al. Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly. PLoS Pathog 2014; 10:e1004459 [View Article] [PubMed]
    [Google Scholar]
  94. Ning J, Zhong Z, Fischer DK, Harris G, Watkins SC et al. Truncated CPSF6 forms higher-order complexes that bind and disrupt HIV-1 capsid. J Virol 2018; 92: [View Article]
    [Google Scholar]
  95. Zhong Z, Ning J, Boggs EA, Jang S, Wallace C et al. Cytoplasmic CPSF6 Regulates HIV-1 Capsid Trafficking and Infection in A Cyclophilin A-Dependent Manner. mBio 2021; 12: [View Article]
    [Google Scholar]
  96. Ingram Z, Kline C, Hughson AK, Singh PK, Fischer HL et al. Spatiotemporal binding of cyclophilin A and CPSF6 to capsid regulates HIV-1 nuclear entry and integration. bioRxiv 20242024.04.08.588584 [View Article] [PubMed]
    [Google Scholar]
  97. Bhattacharya A, Alam SL, Fricke T, Zadrozny K, Sedzicki J et al. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proc Natl Acad Sci USA 2014; 111:18625–18630 [View Article]
    [Google Scholar]
  98. Price AJ, Fletcher AJ, Schaller T, Elliott T, Lee K et al. CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLoS Pathog 2012; 8:e1002896 [View Article] [PubMed]
    [Google Scholar]
  99. Luchsinger C, Lee K, Mardones GA, KewalRamani VN, Diaz-Griffero F. Formation of nuclear CPSF6/CPSF5 biomolecular condensates upon HIV-1 entry into the nucleus is important for productive infection. Sci Rep 2023; 13:10974 [View Article] [PubMed]
    [Google Scholar]
  100. Francis AC, Marin M, Singh PK, Achuthan V, Prellberg MJ et al. HIV-1 replication complexes accumulate in nuclear speckles and integrate into speckle-associated genomic domains. Nat Commun 2020; 11:3505 [View Article]
    [Google Scholar]
  101. Greig JA, Nguyen TA, Lee M, Holehouse AS, Posey AE et al. Arginine-enriched mixed-charge domains provide cohesion for nuclear speckle condensation. Mol Cell 2020; 77:1237–1250 [View Article] [PubMed]
    [Google Scholar]
  102. Burdick RC, Morse M, Rouzina I, Williams MC, Hu W-S et al. HIV-1 uncoating requires long double-stranded reverse transcription products. Sci Adv 2024; 10:eadn7033 [View Article] [PubMed]
    [Google Scholar]
  103. Gifford LB, Melikyan GB. HIV-1 capsid uncoating is a multistep process that proceeds through defect formation followed by disassembly of the capsid lattice. ACS Nano 2024; 18:2928–2947 [View Article] [PubMed]
    [Google Scholar]
  104. Rankovic S, Varadarajan J, Ramalho R, Aiken C, Rousso I. Reverse transcription mechanically initiates HIV-1 capsid disassembly. J Virol 2017; 91: [View Article]
    [Google Scholar]
  105. Hulme AE, Perez O, Hope TJ. Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc Natl Acad Sci U S A 2011; 108:9975–9980 [View Article] [PubMed]
    [Google Scholar]
  106. Rankovic S, Deshpande A, Harel S, Aiken C, Rousso I. HIV-1 uncoating occurs via a series of rapid biomechanical changes in the core related to individual stages of reverse transcription. J Virol 2021; 95: [View Article]
    [Google Scholar]
  107. Rensen E, Mueller F, Scoca V, Parmar JJ, Souque P et al. Clustering and reverse transcription of HIV-1 genomes in nuclear niches of macrophages. EMBO J 2021; 40:e105247 [View Article] [PubMed]
    [Google Scholar]
  108. Yang Y, Fricke T, Diaz-Griffero F. Inhibition of reverse transcriptase activity increases stability of the HIV-1 core. J Virol 2013; 87:683–687 [View Article] [PubMed]
    [Google Scholar]
  109. Rouzina I, Bruinsma R. DNA confinement drives uncoating of the HIV Virus. Eur Phys J Spec Top 2014; 223:1745–1754 [View Article]
    [Google Scholar]
  110. Schirra RT, Dos Santos NFB, Zadrozny KK, Kucharska I, Ganser-Pornillos BK et al. A molecular switch modulates assembly and host factor binding of the HIV-1 capsid. Nat Struct Mol Biol 2023; 30:383–390 [View Article] [PubMed]
    [Google Scholar]
  111. Renner N, Kleinpeter A, Mallery DL, Albecka A, Rifat Faysal KM et al. HIV-1 is dependent on its immature lattice to recruit IP6 for mature capsid assembly. Nat Struct Mol Biol 2023; 30:370–382 [View Article] [PubMed]
    [Google Scholar]
  112. Mallery DL, Faysal KMR, Kleinpeter A, Wilson MSC, Vaysburd M et al. Cellular IP6 levels limit HIV-1 production while viruses that cannot efficiently package IP6 are attenuated for infection and replication. Cell Rep 2019; 29:3983–3996 [View Article] [PubMed]
    [Google Scholar]
  113. Mallery DL, Kleinpeter AB, Renner N, Faysal KMR, Novikova M et al. A stable immature lattice packages IP6 for HIV capsid maturation. Sci Adv 2021; 7: [View Article]
    [Google Scholar]
  114. Lu M, Hou G, Zhang H, Suiter CL, Ahn J et al. Dynamic allostery governs cyclophilin A-HIV capsid interplay. Proc Natl Acad Sci U S A 2015; 112:14617–14622 [View Article] [PubMed]
    [Google Scholar]
  115. Perilla JR, Hadden JA, Goh BC, Mayne CG, Schulten K. All-atom molecular dynamics of virus capsids as drug targets. J Phys Chem Lett 2016; 7:1836–1844 [View Article]
    [Google Scholar]
  116. Blair WS, Pickford C, Irving SL, Brown DG, Anderson M et al. HIV-1 capsid is a tractable target for small molecule therapeutic intervention. PLoS Pathog 2010; 6:e1001220 [View Article]
    [Google Scholar]
  117. Shi J, Zhou J, Shah VB, Aiken C, Whitby K. Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J Virol 2011; 85:542–549 [View Article]
    [Google Scholar]
  118. Wang C, Huang H, Mallon K, Valera L, Parcella K et al. Antiviral properties of HIV-1 capsid inhibitor GSK878. Antimicrob Agents Chemother 2023; 67:e0169422 [View Article] [PubMed]
    [Google Scholar]
  119. Parra RG, Schafer NP, Radusky LG, Tsai M-Y, Guzovsky AB et al. Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatic. Nucleic Acids Res 2016; 44:W356–60 [View Article] [PubMed]
    [Google Scholar]
  120. Ferreiro DU, Komives EA, Wolynes PG. Frustration, function and folding. Curr Opin Struct Biol 2018; 48:68–73 [View Article] [PubMed]
    [Google Scholar]
  121. Chen M, Chen X, Schafer NP, Clementi C, Komives EA et al. Surveying biomolecular frustration at atomic resolution. Nat Commun 2020; 11:5944 [View Article]
    [Google Scholar]
  122. Twarock R, Towers GJ, Stockley PG. Molecular frustration: a hypothesis for regulation of viral infections. Trends Microbiol 2024; 32:17–26 [View Article] [PubMed]
    [Google Scholar]
  123. Ni T, Zhu Y, Yang Z, Xu C, Chaban Y et al. Structure of native HIV-1 cores and their interactions with IP6 and CypA. Sci Adv 2021; 7:eabj5715 [View Article] [PubMed]
    [Google Scholar]
  124. Sauter D, Kirchhoff F. Key viral adaptations preceding the AIDS pandemic. Cell Host Microbe 2019; 25:27–38 [View Article] [PubMed]
    [Google Scholar]
  125. Marlink R, Kanki P, Thior I, Travers K, Eisen G et al. Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science 1994; 265:1587–1590 [View Article] [PubMed]
    [Google Scholar]
  126. O’Donovan D, Ariyoshi K, Milligan P, Ota M, Yamuah L et al. Maternal plasma viral RNA levels determine marked differences in mother-to-child transmission rates of HIV-1 and HIV-2 in The Gambia. MRC/Gambia Government/University College London Medical School working group on mother-child transmission of HIV. AIDS 2000; 14:441–448 [View Article] [PubMed]
    [Google Scholar]
  127. Andersson S, Norrgren H, da Silva Z, Biague A, Bamba S et al. Plasma viral load in HIV-1 and HIV-2 singly and dually infected individuals in Guinea-Bissau, West Africa: significantly lower plasma virus set point in HIV-2 infection than in HIV-1 infection. Arch Intern Med 2000; 160:3286–3293 [View Article] [PubMed]
    [Google Scholar]
  128. Sandler NG, Bosinger SE, Estes JD, Zhu RTR, Tharp GK et al. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature 2014; 511:601–605 [View Article]
    [Google Scholar]
  129. Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 2013; 39:1132–1142 [View Article] [PubMed]
    [Google Scholar]
  130. Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D et al. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 2010; 467:214–217 [View Article]
    [Google Scholar]
  131. Zuliani-Alvarez L, Govasli ML, Rasaiyaah J, Monit C, Perry SO et al. Evasion of cGAS and TRIM5 defines pandemic HIV. Nat Microbiol 2022; 7:1762–1776 [View Article] [PubMed]
    [Google Scholar]
  132. Marchant D, Neil SJD, McKnight Á. Human immunodeficiency virus types 1 and 2 have different replication kinetics in human primary macrophage culture. J Gen Virol 2006; 87:411–418 [View Article] [PubMed]
    [Google Scholar]
  133. Santos-Costa Q, Lopes MM, Calado M, Azevedo-Pereira JM. HIV-2 interaction with cell coreceptors: amino acids within the V1/V2 region of viral envelope are determinant for CCR8, CCR5 and CXCR4 usage. Retrovirology 2014; 11:99 [View Article] [PubMed]
    [Google Scholar]
  134. Bron R, Klasse PJ, Wilkinson D, Clapham PR, Pelchen-Matthews A et al. Promiscuous use of CC and CXC chemokine receptors in cell-to-cell fusion mediated by a human immunodeficiency virus type 2 envelope protein. J Virol 1997; 71:8405–8415 [View Article] [PubMed]
    [Google Scholar]
  135. Reeves JD, Hibbitts S, Simmons G, McKnight A, Azevedo-Pereira JM et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo. J Virol 1999; 73:7795–7804 [View Article] [PubMed]
    [Google Scholar]
  136. McKnight A, Clapham PR, Weiss RA. HIV-2 and SIV infection of nonprimate cell lines expressing human CD4: restrictions to replication at distinct stages. Virology 1994; 201:8–18 [View Article] [PubMed]
    [Google Scholar]
  137. Yamashita M, Emerman M. Retroviral infection of non-dividing cells: old and new perspectives. Virology 2006; 344:88–93 [View Article] [PubMed]
    [Google Scholar]
  138. Mamede JI, Damond F, Bernardo A de, Matheron S, Descamps D et al. Cyclophilins and nucleoporins are required for infection mediated by capsids from circulating HIV-2 primary isolates. Sci Rep 2017; 7:45214 [View Article] [PubMed]
    [Google Scholar]
  139. Li W, Singh PK, Sowd GA, Bedwell GJ, Jang S et al. CPSF6-dependent targeting of speckle-associated domains distinguishes primate from nonprimate lentiviral integration in HIV-1. mBio 2020; 11: [View Article]
    [Google Scholar]
  140. Rebensburg SV, Wei G, Larue RC, Lindenberger J, Francis AC et al. Sec24C is an HIV-1 host dependency factor crucial for virus replication. Nat Microbiol 2021; 6:435–444 [View Article] [PubMed]
    [Google Scholar]
  141. Ylinen LMJ, Price AJ, Rasaiyaah J, Hué S, Rose NJ et al. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity. PLoS Pathog 2010; 6:e1001062 [View Article] [PubMed]
    [Google Scholar]
  142. Price AJ, Marzetta F, Lammers M, Ylinen LMJ, Schaller T et al. Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nat Struct Mol Biol 2009; 16:1036–1042 [View Article] [PubMed]
    [Google Scholar]
  143. Jacques DA, McEwan WA, Hilditch L, Price AJ, Towers GJ et al. HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis. Nature 2016; 536:349–353 [View Article] [PubMed]
    [Google Scholar]
  144. Twizerimana AP, Becker D, Zhu S, Luedde T, Gohlke H et al. The cyclophilin A-binding loop of the capsid regulates the human TRIM5α sensitivity of nonpandemic HIV-1. Proc Natl Acad Sci U S A 2023; 120:e2306374120 [View Article] [PubMed]
    [Google Scholar]
  145. Morellet N, Bouaziz S, Petitjean P, Roques BP. NMR structure of the HIV-1 regulatory protein VPR. J Mol Biol 2003; 327:215–227 [View Article] [PubMed]
    [Google Scholar]
  146. Khamsri B, Murao F, Yoshida A, Sakurai A, Uchiyama T et al. Comparative study on the structure and cytopathogenic activity of HIV Vpr/Vpx proteins. Microbes and Infection 2006; 8:10–15 [View Article]
    [Google Scholar]
  147. Miyatake H, Sanjoh A, Murakami T, Murakami H, Matsuda G et al. Molecular mechanism of HIV-1 Vpr for binding to importin-α. J Mol Biol 2016; 428:2744–2757 [View Article] [PubMed]
    [Google Scholar]
  148. Selig L, Pages J-C, Tanchou V, Prévéral S, Berlioz-Torrent C et al. Interaction with the p6 domain of the Gag precursor mediates incorporation into virions of Vpr and Vpx proteins from primate lentiviruses. J Virol 1999; 73:592–600 [View Article]
    [Google Scholar]
  149. Desai TM, Marin M, Sood C, Shi J, Nawaz F et al. Fluorescent protein-tagged Vpr dissociates from HIV-1 core after viral fusion and rapidly enters the cell nucleus. Retrovirology 2015; 12:88 [View Article] [PubMed]
    [Google Scholar]
  150. Belshan M, Ratner L. Identification of the nuclear localization signal of human immunodeficiency virus type 2 Vpx. Virology 2003; 311:7–15 [View Article] [PubMed]
    [Google Scholar]
  151. Tristem M, Purvis A, Quicke DLJ. Complex evolutionary history of primate lentiviral vpr genes. Virology 1998; 240:232–237 [View Article]
    [Google Scholar]
  152. McCarthy KR, Johnson WE. Plastic proteins and monkey blocks: how lentiviruses evolved to replicate in the presence of primate restriction factors. PLoS Pathog 2014; 10:e1004017 [View Article]
    [Google Scholar]
  153. Romani B, Cohen EA. Lentivirus Vpr and Vpx accessory proteins usurp the cullin4-DDB1 (DCAF1) E3 ubiquitin ligase. Curr Opin Virol 2012; 2:755–763 [View Article] [PubMed]
    [Google Scholar]
  154. Greenwood EJD, Williamson JC, Sienkiewicz A, Naamati A, Matheson NJ et al. Promiscuous targeting of cellular proteins by Vpr drives systems-level proteomic remodeling in HIV-1 infection. Cell Reports 2019; 27:1579–1596 [View Article]
    [Google Scholar]
  155. Schwefel D, Groom HCT, Boucherit VC, Christodoulou E, Walker PA et al. Structural basis of lentiviral subversion of a cellular protein degradation pathway. Nature 2014; 505:234–238 [View Article]
    [Google Scholar]
  156. Schwefel D, Boucherit VC, Christodoulou E, Walker PA, Stoye JP et al. Molecular determinants for recognition of divergent SAMHD1 proteins by the lentiviral accessory protein Vpx. Cell Host Microbe 2015; 17:489–499 [View Article] [PubMed]
    [Google Scholar]
  157. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011; 474:654–657 [View Article] [PubMed]
    [Google Scholar]
  158. Hofmann H, Logue EC, Bloch N, Daddacha W, Polsky SB et al. The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nucleus. J Virol 2012; 86:12552–12560 [View Article] [PubMed]
    [Google Scholar]
  159. Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HCT, Rice GI et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 2011; 480:379–382 [View Article] [PubMed]
    [Google Scholar]
  160. Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 2012; 13:223–228 [View Article] [PubMed]
    [Google Scholar]
  161. Mlcochova P, Sutherland KA, Watters SA, Bertoli C, de Bruin RA et al. A G1-like state allows HIV-1 to bypass SAMHD1 restriction in macrophages. EMBO J 2017; 36:604–616 [View Article] [PubMed]
    [Google Scholar]
  162. Schott K, Fuchs NV, Derua R, Mahboubi B, Schnellbächer E et al. Dephosphorylation of the HIV-1 restriction factor SAMHD1 is mediated by PP2A-B55α holoenzymes during mitotic exit. Nat Commun 2018; 9:2227 [View Article] [PubMed]
    [Google Scholar]
  163. Cribier A, Descours B, Valadão ALC, Laguette N, Benkirane M. Phosphorylation of SAMHD1 by Cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Reports 2013; 3:1036–1043 [View Article]
    [Google Scholar]
  164. White TE, Brandariz-Nuñez A, Valle-Casuso JC, Amie S, Nguyen LA et al. The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 2013; 13:441–451 [View Article] [PubMed]
    [Google Scholar]
  165. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011; 474:658–661 [View Article] [PubMed]
    [Google Scholar]
  166. Sunseri N, O’Brien M, Bhardwaj N, Landau NR. Human immunodeficiency virus type 1 modified to package simian immunodeficiency virus Vpx efficiently infects macrophages and dendritic cells. J Virol 2011; 85:6263–6274 [View Article] [PubMed]
    [Google Scholar]
  167. Yurkovetskiy L, Guney MH, Kim K, Goh SL, McCauley S et al. Primate immunodeficiency virus proteins Vpx and Vpr counteract transcriptional repression of proviruses by the HUSH complex. Nat Microbiol 2018; 3:1354–1361 [View Article] [PubMed]
    [Google Scholar]
  168. Goujon C, Jarrosson-Wuillème L, Bernaud J, Rigal D, Darlix J-L et al. With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC). Gene Ther 2006; 13:991–994 [View Article] [PubMed]
    [Google Scholar]
  169. Duvall MG, Loré K, Blaak H, Ambrozak DA, Adams WC et al. Dendritic cells are less susceptible to human immunodeficiency virus type 2 (HIV-2) infection than to HIV-1 infection. J Virol 2007; 81:13486–13498 [View Article] [PubMed]
    [Google Scholar]
  170. Chauveau L, Puigdomenech I, Ayinde D, Roesch F, Porrot F et al. HIV-2 infects resting CD4+ T cells but not monocyte-derived dendritic cells. Retrovirology 2015; 12:2 [View Article] [PubMed]
    [Google Scholar]
  171. Baldauf H-M, Pan X, Erikson E, Schmidt S, Daddacha W et al. SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 2012; 18:1682–1687 [View Article] [PubMed]
    [Google Scholar]
  172. Samri A, Charpentier C, Diallo MS, Bertine M, Even S et al. Limited HIV-2 reservoirs in central-memory CD4 T-cells associated to CXCR6 co-receptor expression in attenuated HIV-2 infection. PLoS Pathog 2019; 15:e1007758 [View Article] [PubMed]
    [Google Scholar]
  173. Tchasovnikarova IA, Timms RT, Matheson NJ, Wals K, Antrobus R et al. GENE SILENCING. epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells. Science 2015; 348:1481–1485 [View Article] [PubMed]
    [Google Scholar]
  174. Seczynska M, Bloor S, Cuesta SM, Lehner PJ. Genome surveillance by HUSH-mediated silencing of intronless mobile elements. Nature 2022; 601:440–445 [View Article] [PubMed]
    [Google Scholar]
  175. Timms RT, Tchasovnikarova IA, Antrobus R, Dougan G, Lehner PJ. ATF7IP-mediated stabilization of the histone methyltransferase SETDB1 is essential for heterochromatin formation by the HUSH complex. Cell Rep 2016; 17:653–659 [View Article] [PubMed]
    [Google Scholar]
  176. Müller I, Helin K. Keep quiet: the HUSH complex in transcriptional silencing and disease. Nat Struct Mol Biol 2024; 31:11–22 [View Article] [PubMed]
    [Google Scholar]
  177. Garland W, Müller I, Wu M, Schmid M, Imamura K et al. Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression. Mol Cell 2022; 82:1691–1707 [View Article] [PubMed]
    [Google Scholar]
  178. Matkovic R, Morel M, Lanciano S, Larrous P, Martin B et al. TASOR epigenetic repressor cooperates with a CNOT1 RNA degradation pathway to repress HIV. Nat Commun 2022; 13:66 [View Article] [PubMed]
    [Google Scholar]
  179. Chougui G, Munir-Matloob S, Matkovic R, Martin MM, Morel M et al. HIV-2/SIV viral protein X counteracts HUSH repressor complex. Nat Microbiol 2018; 3:891–897 [View Article] [PubMed]
    [Google Scholar]
  180. Tunbak H, Enriquez-Gasca R, Tie CHC, Gould PA, Mlcochova P et al. The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat Commun 2020; 11:5387 [View Article] [PubMed]
    [Google Scholar]
  181. Danac JMC, Matthews RE, Gungi A, Qin C, Parsons H et al. Competition between two HUSH complexes orchestrates the immune response to retroelement invasion. Mol Cell 2024; 84:2870–2881 [View Article] [PubMed]
    [Google Scholar]
  182. Laliberté A, Prelli Bozzo C, Stahl-Hennig C, Hunszinger V, Joas S et al. Vpr attenuates antiviral immune responses and is critical for full pathogenicity of SIVmac239 in rhesus macaques. iScience 2023; 26:108351 [View Article] [PubMed]
    [Google Scholar]
  183. Ali A, Ng HL, Blankson JN, Burton DR, Buckheit RW 3rd et al. Highly attenuated infection with a Vpr-deleted molecular clone of Human immunodeficiency virus-1. J Infect Dis 2018; 218:1447–1452 [View Article]
    [Google Scholar]
  184. Balliet JW, Kolson DL, Eiger G, Kim FM, McGann KA et al. Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary HIV-1 isolate. Virology 1994; 200:623–631 [View Article] [PubMed]
    [Google Scholar]
  185. Connor RI, Chen BK, Choe S, Landau NR. Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 1995; 206:935–944 [View Article] [PubMed]
    [Google Scholar]
  186. Harman AN, Nasr N, Feetham A, Galoyan A, Alshehri AA et al. HIV blocks interferon induction in human dendritic cells and macrophages by dysregulation of TBK1. J Virol 2015; 89:6575–6584 [View Article] [PubMed]
    [Google Scholar]
  187. Lubow J, Collins KL. Vpr is a VIP: HIV Vpr and infected macrophages promote viral pathogenesis. Viruses 2020; 12:809 [View Article]
    [Google Scholar]
  188. Hattori N, Michaels F, Fargnoli K, Marcon L, Gallo RC et al. The human immunodeficiency virus type 2 vpr gene is essential for productive infection of human macrophages. Proc Natl Acad Sci U S A 1990; 87:8080–8084 [View Article] [PubMed]
    [Google Scholar]
  189. Vermeire J, Roesch F, Sauter D, Rua R, Hotter D et al. HIV triggers a cGAS-dependent, Vpu- and Vpr-regulated type I interferon response in CD4+ T Cells. Cell Rep 2016; 17:413–424 [View Article] [PubMed]
    [Google Scholar]
  190. Khan H, Sumner RP, Rasaiyaah J, Tan CP, Rodriguez-Plata MT et al. n.d. HIV-1 Vpr antagonizes innate immune activation by targeting karyopherin-mediated NF-κB/IRF3 nuclear transport. eLife 9: [View Article]
    [Google Scholar]
  191. Reuschl A-K, Mesner D, Shivkumar M, Whelan MVX, Pallett LJ et al. HIV-1 Vpr drives a tissue residency-like phenotype during selective infection of resting memory T cells. Cell Rep 2022; 39:110650 [View Article] [PubMed]
    [Google Scholar]
  192. Vodicka MA, Koepp DM, Silver PA, Emerman M. HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes Dev 1998; 12:175–185 [View Article] [PubMed]
    [Google Scholar]
  193. Forouzanfar F, Ali S, Wallet C, De Rovere M, Ducloy C et al. HIV-1 Vpr mediates the depletion of the cellular repressor CTIP2 to counteract viral gene silencing. Sci Rep 2019; 9:13154 [View Article] [PubMed]
    [Google Scholar]
  194. Kawano K, Doucet AJ, Ueno M, Kariya R, An W et al. HIV-1 Vpr and p21 restrict LINE-1 mobility. Nucleic Acids Res 2018; 46:8454–8470 [View Article] [PubMed]
    [Google Scholar]
  195. Pace MJ, Graf EH, O’Doherty U. HIV 2-long terminal repeat circular DNA is stable in primary CD4+T Cells. Virology 2013; 441:18–21 [View Article] [PubMed]
    [Google Scholar]
  196. Richetta C, Thierry S, Thierry E, Lesbats P, Lapaillerie D et al. Two-long terminal repeat (LTR) DNA circles are a substrate for HIV-1 integrase. J Biol Chem 2019; 294:8286–8295 [View Article]
    [Google Scholar]
  197. Thierry S, Munir S, Thierry E, Subra F, Leh H et al. Integrase inhibitor reversal dynamics indicate unintegrated HIV-1 dna initiate de novo integration. Retrovirology 2015; 12:24 [View Article]
    [Google Scholar]
  198. Munir S, Thierry S, Subra F, Deprez E, Delelis O. Quantitative analysis of the time-course of viral DNA forms during the HIV-1 life cycle. Retrovirology 2013; 10:87 [View Article] [PubMed]
    [Google Scholar]
  199. Dupont L, Bloor S, Williamson JC, Cuesta SM, Shah R et al. The SMC5/6 complex compacts and silences unintegrated HIV-1 DNA and is antagonized by Vpr. Cell Host Microbe 2021; 29:792–805 [View Article] [PubMed]
    [Google Scholar]
  200. Irwan ID, Bogerd HP, Cullen BR. Epigenetic silencing by the SMC5/6 complex mediates HIV-1 latency. Nat Microbiol 2022; 7:2101–2113 [View Article]
    [Google Scholar]
  201. Roshal M, Kim B, Zhu Y, Nghiem P, Planelles V. Activation of the ATR-mediated DNA damage response by the HIV-1 viral protein R. J Biol Chem 2003; 278:25879–25886 [View Article] [PubMed]
    [Google Scholar]
  202. Planelles V, Jowett JB, Li QX, Xie Y, Hahn B et al. Vpr-induced cell cycle arrest is conserved among primate lentiviruses. J Virol 1996; 70:2516–2524 [View Article] [PubMed]
    [Google Scholar]
  203. Laguette N, Brégnard C, Hue P, Basbous J, Yatim A et al. Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing. Cell 2014; 156:134–145 [View Article] [PubMed]
    [Google Scholar]
  204. Li D, Lopez A, Sandoval C, Nichols Doyle R, Fregoso OI. HIV Vpr Modulates the Host DNA Damage Response at Two Independent Steps to Damage DNA and Repress Double-Strand DNA Break Repair. mBio 2020; 11: [View Article]
    [Google Scholar]
  205. Zhang F, Bieniasz PD. HIV-1 vpr induces cell cycle arrest and enhances viral gene expression by depleting CCDC137. Elife 2020; 9: [View Article]
    [Google Scholar]
  206. Fekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A et al. Human SLX4 is a holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 2009; 138:78–89 [View Article] [PubMed]
    [Google Scholar]
  207. Belzile J-P, Abrahamyan LG, Gérard FCA, Rougeau N, Cohen EA. Formation of mobile chromatin-associated nuclear foci containing HIV-1 Vpr and VPRBP is critical for the induction of G2 cell cycle arrest. PLoS Pathog 2010; 6:e1001080 [View Article] [PubMed]
    [Google Scholar]
  208. Hrecka K, Hao C, Shun M-C, Kaur S, Swanson SK et al. HIV-1 and HIV-2 exhibit divergent interactions with HLTF and UNG2 DNA repair proteins. Proc Natl Acad Sci U S A 2016; 113:E3921–30 [View Article] [PubMed]
    [Google Scholar]
  209. Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 2021; 6:291 [View Article] [PubMed]
    [Google Scholar]
  210. Ma Z, Damania B. The cGAS-STING defense pathway and its counteraction by viruses. Cell Host Microbe 2016; 19:150–158 [View Article] [PubMed]
    [Google Scholar]
  211. Müller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J et al. Functional role of type I and type II interferons in antiviral defense. Science 1994; 264:1918–1921 [View Article] [PubMed]
    [Google Scholar]
  212. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015; 16:343–353 [View Article] [PubMed]
    [Google Scholar]
  213. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 2014; 32:513–545 [View Article] [PubMed]
    [Google Scholar]
  214. Schmidt N, Domingues P, Golebiowski F, Patzina C, Tatham MH et al. An influenza virus-triggered SUMO switch orchestrates co-opted endogenous retroviruses to stimulate host antiviral immunity. Proc Natl Acad Sci U S A 2019; 116:17399–17408 [View Article] [PubMed]
    [Google Scholar]
  215. Rookhuizen DC, Bonte P-E, Ye M, Hoyler T, Gentili M et al. Induction of transposable element expression is central to innate sensing. ImmunologybioRxiv [View Article]
    [Google Scholar]
  216. Li H-T, Jang HJ, Rohena-Rivera K, Liu M, Gujar H et al. RNA mis-splicing drives viral mimicry response after DNMTi therapy in SETD2-mutant kidney cancer. Cell Rep 2023; 42:112016 [View Article] [PubMed]
    [Google Scholar]
  217. Briones MS, Dobard CW, Chow SA. Role of human immunodeficiency virus type 1 integrase in uncoating of the viral core. J Virol 2010; 84:5181–5190 [View Article] [PubMed]
    [Google Scholar]
  218. Liu Z, Pan Q, Ding S, Qian J, Xu F et al. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 2013; 14:398–410 [View Article] [PubMed]
    [Google Scholar]
  219. Franke EK, Yuan HE, Luban J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature 1994; 372:359–362 [View Article] [PubMed]
    [Google Scholar]
  220. Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT et al. Functional association of cyclophilin A with HIV-1 virions. Nature 1994; 372:363–365 [View Article] [PubMed]
    [Google Scholar]
  221. Vajdos FF, Yoo S, Houseweart M, Sundquist WI, Hill CP. Crystal structure of cyclophilin A complexed with A binding site peptide from the HIV-1 capsid protein. Protein Sci 1997; 6:2297–2307 [View Article] [PubMed]
    [Google Scholar]
  222. Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 1993; 73:1067–1078 [View Article] [PubMed]
    [Google Scholar]
  223. Bosco DA, Eisenmesser EZ, Pochapsky S, Sundquist WI, Kern D. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc Natl Acad Sci U S A 2002; 99:5247–5252 [View Article] [PubMed]
    [Google Scholar]
  224. Liu C, Perilla JR, Ning J, Lu M, Hou G et al. Cyclophilin A stabilizes the HIV-1 capsid through A novel non-canonical binding site. Nat Commun 2016; 7:1–10 [View Article]
    [Google Scholar]
  225. Shah VB, Shi J, Hout DR, Oztop I, Krishnan L et al. The host proteins transportin SR2/TNPO3 and cyclophilin A exert opposing effects on HIV-1 uncoating. J Virol 2013; 87:422–432 [View Article] [PubMed]
    [Google Scholar]
  226. Keckesova Z, Ylinen LMJ, Towers GJ. Cyclophilin A renders human immunodeficiency virus type 1 sensitive to Old World monkey but not human TRIM5 alpha antiviral activity. J Virol 2006; 80:4683–4690 [View Article] [PubMed]
    [Google Scholar]
  227. Bichel K, Price AJ, Schaller T, Towers GJ, Freund SMV et al. HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358. Retrovirology 2013; 10:81 [View Article] [PubMed]
    [Google Scholar]
  228. Lin DH, Zimmermann S, Stuwe T, Stuwe E, Hoelz A. Structural and functional analysis of the C-terminal domain of Nup358/RanBP2. J Mol Biol 2013; 425:1318–1329 [View Article] [PubMed]
    [Google Scholar]
  229. Matreyek KA, Engelman A. The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J Virol 2011; 85:7818–7827 [View Article] [PubMed]
    [Google Scholar]
  230. Wei G, Iqbal N, Courouble VV, Francis AC, Singh PK et al. Prion-like low complexity regions enable avid virus-host interactions during HIV-1 infection. Nat Commun 2022; 13:5879 [View Article] [PubMed]
    [Google Scholar]
  231. Stacey JCV, Tan A, Lu JM, James LC, Dick RA et al. Two structural switches in HIV-1 capsid regulate capsid curvature and host factor binding. Proc Natl Acad Sci U S A 2023; 120:e2220557120 [View Article] [PubMed]
    [Google Scholar]
  232. Scoca V, Morin R, Collard M, Tinevez J-Y, Di Nunzio F. HIV-induced membraneless organelles orchestrate post-nuclear entry steps. J Mol Cell Biol 2023; 14: [View Article]
    [Google Scholar]
  233. Guedán A, Donaldson CD, Caroe ER, Cosnefroy O, Taylor IA et al. HIV-1 requires capsid remodelling at the nuclear pore for nuclear entry and integration. PLoS Pathog 2021; 17:e1009484 [View Article]
    [Google Scholar]
  234. Di Nunzio F, Uversky VN, Mouland AJ. Biomolecular condensates: insights into early and late steps of the HIV-1 replication cycle. Retrovirology 2023; 20:4 [View Article] [PubMed]
    [Google Scholar]
  235. Jang S, Bedwell GJ, Singh SP, Yu HJ, Arnarson B et al. HIV-1 usurps mixed-charge domain-dependent CPSF6 phase separation for higher-order capsid binding, nuclear entry and viral DNA integration. Nucleic Acids Res 2024; 52:11060–11082 [View Article]
    [Google Scholar]
  236. Link JO, Rhee MS, Tse WC, Zheng J, Somoza JR et al. Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature 2020; 584:614–618 [View Article] [PubMed]
    [Google Scholar]
  237. Bester SM, Wei G, Zhao H, Adu-Ampratwum D, Iqbal N et al. Structural and mechanistic bases for a potent HIV-1 capsid inhibitor. Science 2020; 370:360–364 [View Article] [PubMed]
    [Google Scholar]
  238. Pornillos O, Ganser-Pornillos BK, Yeager M. Atomic-level modelling of the HIV capsid. Nature 2011; 469:424–427 [View Article] [PubMed]
    [Google Scholar]
  239. Dick RA, Zadrozny KK, Xu C, Schur FKM, Lyddon TD et al. Inositol phosphates are assembly co-factors for HIV-1. Nature 2018; 560:509–512 [View Article] [PubMed]
    [Google Scholar]
  240. Mallery DL, Márquez CL, McEwan WA, Dickson CF, Jacques DA et al. IP6 is an HIV pocket factor that prevents capsid collapse and promotes DNA synthesis. Elife 2018; 7:e35335 [View Article] [PubMed]
    [Google Scholar]
  241. Xu C, Fischer DK, Rankovic S, Li W, Dick RA et al. Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis. PLoS Biol 2020; 18:e3001015 [View Article] [PubMed]
    [Google Scholar]
  242. Renner N, Mallery DL, Faysal KMR, Peng W, Jacques DA et al. A lysine ring in HIV capsid pores coordinates IP6 to drive mature capsid assembly. PLoS Pathog 2021; 17:e1009164 [View Article] [PubMed]
    [Google Scholar]
  243. Highland CM, Tan A, Ricaña CL, Briggs JAG, Dick RA. Structural insights into HIV-1 polyanion-dependent capsid lattice formation revealed by single particle cryo-EM. Proc Natl Acad Sci U S A 2023; 120:e2220545120 [View Article] [PubMed]
    [Google Scholar]
  244. Gres AT, Kirby KA, McFadden WM, Du H, Liu D et al. Multidisciplinary studies with mutated HIV-1 capsid proteins reveal structural mechanisms of lattice stabilization. Nat Commun 2023; 14:5614 [View Article] [PubMed]
    [Google Scholar]
  245. Piacentini J, Allen DS, Ganser-Pornillos BK, Chanda SK, Yoh SM et al. Molecular determinants of PQBP1 binding to the HIV-1 capsid lattice. J Mol Biol 2024; 436:168409 [View Article] [PubMed]
    [Google Scholar]
  246. Yoh SM, Mamede JI, Lau D, Ahn N, Sánchez-Aparicio MT et al. Recognition of HIV-1 capsid by PQBP1 licenses an innate immune sensing of nascent HIV-1 DNA. Mol Cell 2022; 82:2871–2884 [View Article] [PubMed]
    [Google Scholar]
  247. Yoh SM, Schneider M, Seifried J, Soonthornvacharin S, Akleh RE et al. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell 2015; 161:1293–1305 [View Article] [PubMed]
    [Google Scholar]
  248. Shen Q, Kumari S, Xu C, Jang S, Shi J et al. The capsid lattice engages a bipartite NUP153 motif to mediate nuclear entry of HIV-1 cores. Proc Natl Acad Sci USA 2023; 120: [View Article]
    [Google Scholar]
  249. Smaga SS, Xu C, Summers BJ, Digianantonio KM, Perilla JR et al. MxB restricts HIV-1 by targeting the tri-hexamer interface of the viral capsid. Structure 2019; 27:1234–1245 [View Article] [PubMed]
    [Google Scholar]
  250. Goujon C, Greenbury RA, Papaioannou S, Doyle T, Malim MH. A triple-arginine motif in the amino-terminal domain and oligomerization are required for HIV-1 inhibition by human MX2. J Virol 2015; 89:4676–4680 [View Article]
    [Google Scholar]
  251. Busnadiego I, Kane M, Rihn SJ, Preugschas HF, Hughes J et al. Host and viral determinants of Mx2 antiretroviral activity. J Virol 2014; 88:7738–7752 [View Article] [PubMed]
    [Google Scholar]
  252. Goujon C, Moncorgé O, Bauby H, Doyle T, Ward CC et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 2013; 502:559–562 [View Article] [PubMed]
    [Google Scholar]
  253. Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T et al. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 2013; 502:563–566 [View Article] [PubMed]
    [Google Scholar]
  254. Pornillos O, Ganser-Pornillos BK, Kelly BN, Hua Y, Whitby FG et al. X-ray structures of the hexameric building block of the HIV capsid. Cell 2009; 137:1282–1292 [View Article] [PubMed]
    [Google Scholar]
  255. Johnson GT, Goodsell DS, Autin L, Forli S, Sanner MF et al. 3D molecular models of whole HIV-1 virions generated with cellPACK. Faraday Discuss 2014; 169:23–44 [View Article] [PubMed]
    [Google Scholar]
  256. Neil S, Martin F, Ikeda Y, Collins M. Postentry restriction to human immunodeficiency virus-based vector transduction in human monocytes. J Virol 2001; 75:5448–5456 [View Article] [PubMed]
    [Google Scholar]
  257. Mlcochova P, Winstone H, Zuliani-Alvarez L, Gupta RK. TLR4-mediated pathway triggers interferon-independent G0 arrest and antiviral SAMHD1 activity in macrophages. Cell Rep 2020; 30:3972–3980 [View Article] [PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/jgv.0.002057
Loading
/content/journal/jgv/10.1099/jgv.0.002057
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error