Skip to content
1887

Abstract

Translation errors, impaired folding or environmental stressors (e.g. infection) can all lead to an increase in the presence of misfolded proteins. These activate cellular responses to their removal, including intracellular protein degradation activities. Protein ubiquitylation is involved in two major degradation pathways, the ubiquitin-proteasome system and selective autophagy. In humans, the ubiquitin-like modifier-activating enzyme 1 (UBA1) is the primary E1 enzyme in the ubiquitin conjugation cascade. Viruses have evolved to exploit protein degradation pathways to complete their infection cycles. Zika virus (ZIKV) is an emerging orthoflavivirus causing serious neurologic disorders in neonates (congenital microcephaly) and adults (Guillain–Barré syndrome). Non-structural protein 5 (NS5), the largest and most conserved protein in the orthoflaviviruses, catalyses the synthesis and capping of new viral genomes. In addition to viral RNA replication in the cytoplasm, ZIKV NS5 is translocated into the nucleus to interfere with host antiviral responses. Here, we demonstrate that ZIKV NS5 co-immunoprecipitates with cellular UBA1. Immunofluorescence assays suggest that this interaction takes place primarily in the nucleus of an infected cell, although colocalization of both proteins is also detected in the cytosol. RNA interference-mediated depletion of UBA1 leads to reduced virus titres in the infected cells, while transient overexpression of UBA1 favours faster replication kinetics, with higher virus titres and protein levels detected. Moreover, UBA1-targeting drugs cause significant drops in virus infectivity. These results support a proviral role for UBA1 during ZIKV infection and encourage the potential use of inhibitors against this enzyme or its NS5-interacting epitopes as potential therapeutic targets.

Funding
This study was supported by the:
  • Universidad de Castilla-La Mancha (Award 2024-INVGO-12348)
    • Principle Award Recipient: MaríaJosé Romero de Ávila
  • Universidad de Castilla-La Mancha (Award 2020-PREDUCLM-16723)
    • Principle Award Recipient: ImanolRodrigo
  • Universidad de Castilla-La Mancha (Award 2022-GRIN-34150)
    • Principle Award Recipient: ArmandoArias
  • Junta de Comunidades de Castilla-La Mancha (Award SBPLY/21/180501/000076)
    • Principle Award Recipient: ArmandoArias
  • Ministerio de Ciencia, Innovación y Universidades (Award CNS2022-135258)
    • Principle Award Recipient: ArmandoArias
  • Ministerio de Ciencia, Innovación y Universidades (Award BEAGAL18/00074)
    • Principle Award Recipient: ArmandoArias
  • Ministerio de Ciencia, Innovación y Universidades (Award PID2022-137974OB-I00)
    • Principle Award Recipient: ArmandoArias
  • Ministerio de Ciencia, Innovación y Universidades (Award PID2019-106068GB-I00)
    • Principle Award Recipient: ArmandoArias
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.002063
2025-01-08
2025-01-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/106/1/jgv002063.html?itemId=/content/journal/jgv/10.1099/jgv.0.002063&mimeType=html&fmt=ahah

References

  1. Moore SM, Oidtman RJ, Soda KJ, Siraj AS, Reiner RC Jr et al. Leveraging multiple data types to estimate the size of the Zika epidemic in the Americas. PLoS Negl Trop Dis 2020; 14:e0008640 [View Article] [PubMed]
    [Google Scholar]
  2. Colón-González FJ, Peres CA, Steiner São Bernardo C, Hunter PR, Lake IR. After the epidemic: Zika virus projections for Latin America and the Caribbean. PLoS Negl Trop Dis 2017; 11:e0006007 [View Article] [PubMed]
    [Google Scholar]
  3. Wheeler AC, Toth D, Ridenour T, Lima Nóbrega L, Borba Firmino R et al. Developmental outcomes among young children with congenital Zika syndrome in Brazil. JAMA Netw Open 2020; 3:e204096 [View Article] [PubMed]
    [Google Scholar]
  4. Musso D, Ko AI, Baud D. Zika virus infection - after the pandemic. N Engl J Med 2019; 381:1444–1457 [View Article] [PubMed]
    [Google Scholar]
  5. Katz I, Gilburd B, Shovman O. Zika autoimmunity and Guillain-Barré syndrome. Curr Opin Rheumatol 2019; 31:484–487 [View Article] [PubMed]
    [Google Scholar]
  6. Postler TS, Beer M, Blitvich BJ, Bukh J, de Lamballerie X et al. Renaming of the genus Flavivirus to Orthoflavivirus and extension of binomial species names within the family Flaviviridae. Arch Virol 2023; 168:224 [View Article] [PubMed]
    [Google Scholar]
  7. Salje H. Achieving zero deaths from dengue virus under evolving population immunity. Lancet Infect Dis 2024; 24:12–13 [View Article] [PubMed]
    [Google Scholar]
  8. Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol 2020; 5:796–812 [View Article] [PubMed]
    [Google Scholar]
  9. Vilibic-Cavlek T, Petrovic T, Savic V, Barbic L, Tabain I et al. Epidemiology of Usutu Virus: The European Scenario. Pathogens 2020; 9:1–19 [View Article] [PubMed]
    [Google Scholar]
  10. Simonin Y. Circulation of West Nile Virus and Usutu Virus in Europe: overview and challenges. Viruses 2024; 16:599 [View Article] [PubMed]
    [Google Scholar]
  11. Clé M, Beck C, Salinas S, Lecollinet S, Gutierrez S et al. Usutu virus: a new threat?. Epidemiol Infect 2019; 147:e232 [View Article] [PubMed]
    [Google Scholar]
  12. van den Elsen K, Quek JP, Luo D. Molecular insights into the Flavivirus replication complex. Viruses 2021; 13:956 [View Article] [PubMed]
    [Google Scholar]
  13. Wang B, Thurmond S, Hai R, Song J. Structure and function of Zika virus NS5 protein: perspectives for drug design. Cell Mol Life Sci 2018; 75:1723–1736 [View Article] [PubMed]
    [Google Scholar]
  14. Saade M, Ferrero DS, Blanco-Ameijeiras J, Gonzalez-Gobartt E, Flores-Mendez M et al. Multimerization of zika virus-NS5 causes ciliopathy and forces premature neurogenesis. Cell Stem Cell 2020; 27:920–936 [View Article] [PubMed]
    [Google Scholar]
  15. Prasad V, Greber UF. The endoplasmic reticulum unfolded protein response - homeostasis, cell death and evolution in virus infections. FEMS Microbiol Rev 2021; 45:1–19 [View Article] [PubMed]
    [Google Scholar]
  16. Schneider SM, Lee BH, Nicola AV. Viral entry and the ubiquitin-proteasome system. Cell Microbiol 2021; 23:e13276 [View Article] [PubMed]
    [Google Scholar]
  17. Shaid S, Brandts CH, Serve H, Dikic I. Ubiquitination and selective autophagy. Cell Death Differ 2013; 20:21–30 [View Article] [PubMed]
    [Google Scholar]
  18. Lambert-Smith IA, Saunders DN, Yerbury JJ. The pivotal role of ubiquitin-activating enzyme E1 (UBA1) in neuronal health and neurodegeneration. Int J Biochem Cell Biol 2020; 123:105746 [View Article] [PubMed]
    [Google Scholar]
  19. Pontifex CS, Zaman M, Fanganiello RD, Shutt TE, Pfeffer G. Valosin-Containing Protein (VCP): a review of its diverse molecular functions and clinical phenotypes. Int J Mol Sci 2024; 25:5633 [View Article] [PubMed]
    [Google Scholar]
  20. Ebner P, Versteeg GA, Ikeda F. Ubiquitin enzymes in the regulation of immune responses. Crit Rev Biochem Mol Biol 2017; 52:425–460 [View Article] [PubMed]
    [Google Scholar]
  21. Barghout SH, Schimmer AD. E1 enzymes as therapeutic targets in cancer. Pharmacol Rev 2021; 73:1–58 [View Article] [PubMed]
    [Google Scholar]
  22. Groen EJN, Gillingwater TH. UBA1: at the crossroads of ubiquitin homeostasis and neurodegeneration. Trends Mol Med 2015; 21:622–632 [View Article] [PubMed]
    [Google Scholar]
  23. Bassi MR, Sempere RN, Meyn P, Polacek C, Arias A. Extinction of zika virus and usutu virus by lethal mutagenesis reveals different patterns of sensitivity to three mutagenic drugs. Antimicrob Agents Chemother 2018; 62:e00380-18 [View Article] [PubMed]
    [Google Scholar]
  24. Sempere RN, Arias A. Establishment of a cell culture model of persistent flaviviral infection: usutu virus shows sustained replication during passages and resistance to extinction by antiviral nucleosides. Viruses 2019; 11:560 [View Article] [PubMed]
    [Google Scholar]
  25. Rodrigo I, Ballesta C, Nunes EB, Pérez P, García-Arriaza J et al. Eeyarestatin I, an inhibitor of the valosin-containing protein, exhibits potent virucidal activity against the flaviviruses. Antiviral Res 2022; 207:105416 [View Article] [PubMed]
    [Google Scholar]
  26. Hwang S, Alhatlani B, Arias A, Caddy SL, Christodoulou C et al. Murine norovirus: propagation, quantification, and genetic manipulation. Curr Protoc Microbiol 2014; 33:15K.2.1-15K.2.61 [View Article] [PubMed]
    [Google Scholar]
  27. Albentosa-González L, Jimenez de Oya N, Arias A, Clemente-Casares P, Martin-Acebes et al. Akt kinase intervenes in flavivirus replication by interacting with viral protein NS5. Viruses 2021; 13:896 [View Article] [PubMed]
    [Google Scholar]
  28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25:402–408 [View Article] [PubMed]
    [Google Scholar]
  29. Albentosa-González L, Clemente-Casares P, Sabariegos R, Mas A. Polymerase activity, protein-protein interaction, and cellular localization of the usutu virus NS5 protein. Antimicrob Agents Chemother 2019; 64:e01573-19 [View Article] [PubMed]
    [Google Scholar]
  30. Zeng J, Dong S, Luo Z, Xie X, Fu B et al. The zika virus Capsid disrupts corticogenesis by suppressing dicer activity and miRNA biogenesis. Cell Stem Cell 2020; 27:618–632 [View Article] [PubMed]
    [Google Scholar]
  31. Hou W, Cruz-Cosme R, Armstrong N, Obwolo LA, Wen F et al. Molecular cloning and characterization of the genes encoding the proteins of Zika virus. Gene 2017; 628:117–128 [View Article] [PubMed]
    [Google Scholar]
  32. Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L et al. Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 2016; 19:882–890 [View Article] [PubMed]
    [Google Scholar]
  33. Lebeau G, Hoareau M, Rivière S, El Safadi D, Da Silva CR et al. Cell cycle and mitosis progression during ZIKA virus infection: the viral non-structural protein NS5 as a master regulator of the APC/cyclosome?. Biochimie 2024; 221:75–80 [View Article] [PubMed]
    [Google Scholar]
  34. Moudry P, Lukas C, Macurek L, Hanzlikova H, Hodny Z et al. Ubiquitin-activating enzyme UBA1 is required for cellular response to DNA damage. Cell Cycle 2012; 11:1573–1582 [View Article] [PubMed]
    [Google Scholar]
  35. Hammack C, Ogden SC, Madden JC Jr, Medina A, Xu C et al. Zika virus infection induces DNA damage response in human neural progenitors that enhances viral replication. J Virol 2019; 93:e00638-19 [View Article] [PubMed]
    [Google Scholar]
  36. Phongphaew W, Kobayashi S, Sasaki M, Carr M, Hall WW et al. Valosin-containing protein (VCP/p97) plays a role in the replication of West Nile virus. Virus Res 2017; 228:114–123 [View Article] [PubMed]
    [Google Scholar]
  37. Mazeaud C, Anton A, Pahmeier F, Sow AA, Cerikan B et al. The biogenesis of dengue virus replication organelles requires the ATPase activity of valosin-containing protein. Viruses 2021; 13:2092 [View Article] [PubMed]
    [Google Scholar]
  38. Anton A, Mazeaud C, Freppel W, Gilbert C, Tremblay N et al. Valosin-containing protein ATPase activity regulates the morphogenesis of Zika virus replication organelles and virus-induced cell death. Cell Microbiol 2021; 23:e13302 [View Article] [PubMed]
    [Google Scholar]
  39. Ramanathan HN, Zhang S, Douam F, Mar KB, Chang J et al. A sensitive yellow fever virus entry reporter identifies valosin-containing protein (VCP/P97) as an essential host factor for flavivirus uncoating. mBio 2020; 11:e00467-20 [View Article] [PubMed]
    [Google Scholar]
  40. van den Boom J, Meyer H. VCP/p97-mediated unfolding as a principle in protein homeostasis and signaling. Mol Cell 2018; 69:182–194 [View Article] [PubMed]
    [Google Scholar]
  41. Arakawa M, Tabata K, Ishida K, Kobayashi M, Arai A et al. Flavivirus recruits the valosin-containing protein-NPL4 complex to induce stress granule disassembly for efficient viral genome replication. J Biol Chem 2022; 298:101597 [View Article] [PubMed]
    [Google Scholar]
  42. Zhao Z, Tao M, Han W, Fan Z, Imran M et al. Nuclear localization of Zika virus NS5 contributes to suppression of type I interferon production and response. J Gen Virol 2021; 102:001376 [View Article] [PubMed]
    [Google Scholar]
  43. Morrison J, Laurent-Rolle M, Maestre AM, Rajsbaum R, Pisanelli G et al. Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathog 2013; 9:e1003265 [View Article] [PubMed]
    [Google Scholar]
  44. Muthuraj PG, Sahoo PK, Kraus M, Bruett T, Annamalai AS et al. Zika virus infection induces endoplasmic reticulum stress and apoptosis in placental trophoblasts. Cell Death Discov 2021; 7:24 [View Article] [PubMed]
    [Google Scholar]
  45. Alfano C, Gladwyn-Ng I, Couderc T, Lecuit M, Nguyen L. The unfolded protein response: a key player in zika virus-associated congenital microcephaly. Front Cell Neurosci 2019; 13:94 [View Article] [PubMed]
    [Google Scholar]
  46. Luo H. Interplay between the virus and the ubiquitin-proteasome system: molecular mechanism of viral pathogenesis. Curr Opin Virol 2016; 17:1–10 [View Article] [PubMed]
    [Google Scholar]
  47. Kao RL, Jacobsen AA, Billington CJ Jr, Yohe SL, Beckman AK et al. A case of VEXAS syndrome associated with EBV-associated hemophagocytic lymphohistiocytosis. Blood Cells Mol Dis 2022; 93:102636 [View Article] [PubMed]
    [Google Scholar]
  48. Rivera EG, Patnaik A, Salvemini J, Jain S, Lee K et al. SARS-CoV-2/COVID-19 and its relationship with NOD2 and ubiquitination. Clin Immunol 2022; 238:109027 [View Article] [PubMed]
    [Google Scholar]
  49. Watanabe R, Kiji M, Hashimoto M. Vasculitis associated with VEXAS syndrome: a literature review. Front Med 2022; 9:983939 [View Article] [PubMed]
    [Google Scholar]
  50. Poulter JA, Collins JC, Cargo C, De Tute RM, Evans P et al. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. Blood 2021; 137:3676–3681 [View Article] [PubMed]
    [Google Scholar]
  51. Hyer ML, Milhollen MA, Ciavarri J, Fleming P, Traore T et al. A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment. Nat Med 2018; 24:186–193 [View Article] [PubMed]
    [Google Scholar]
  52. da Silva SR, Paiva S-L, Lukkarila JL, Gunning PT. Exploring a new frontier in cancer treatment: targeting the ubiquitin and ubiquitin-like activating enzymes. J Med Chem 2013; 56:2165–2177 [View Article]
    [Google Scholar]
  53. Wade BE, Wang C-E, Yan S, Bhat K, Huang B et al. Ubiquitin-activating enzyme activity contributes to differential accumulation of mutant huntingtin in brain and peripheral tissues. J Neurosci 2014; 34:8411–8422 [View Article] [PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/jgv.0.002063
Loading
/content/journal/jgv/10.1099/jgv.0.002063
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error