Coronaviruses

Coronaviruses are a large family of viruses that can infect a range of hosts. They are known to cause diseases including the common cold, Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in humans.
In January 2020, China saw an outbreak of a new coronavirus strain now named SARS-CoV-2. Although the animal reservoir for the SARS and MERS viruses are known, this has yet to have been confirmed for SARS-CoV-2. All three strains are transmissible between humans.
To allow the widest possible distribution of relevant research, the Microbiology Society has brought together articles from across our portfolio and made this content freely available.
Image credit: "MERS-CoV" by NIAID is licensed under CC BY 2.0, this image has been modified.
Collection Contents
1 - 20 of 37 results
-
-
SARS-CoV-2 in outdoor air following the third wave lockdown release, Portugal, 2021
More LessAiming to contribute with more data on the presence of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in outdoor environments, we performed air sampling in outdoor terraces from restaurants in three major cities of Portugal in April 2021, following the third wave lockdown release in the country. Air samples (n=19) were collected in 19 restaurant terraces during lunch time. Each air sample was collected using a Coriolis Compact air sampler, followed by RNA extraction and real-time quantitative PCR for the detection of viral RNA. Viral viability was also assessed through RNAse pre-treatment of samples. Only one of the 19 air samples was positive for SARS-CoV-2 RNA, with 7337 gene copies m–3 for the genomic region N2, with no viable virus in this sample. The low number of positive samples found in this study is not surprising, as sampling took place in outdoor settings where air circulation is optimal, and aerosols are rapidly dispersed by the air currents. These results are consistent with previous reports stating that transmission of SARS-CoV-2 in outdoor spaces is low, although current evidence shows an association of exposures in settings where drinking and eating is possible on-site with an increased risk in acquiring SARS-CoV-2 infection. Moreover, the minimal infectious dose for SARS-CoV-2 still needs to be determined so that the real risk of infection in different environments can be accurately established.
-
-
-
SARS-CoV-2 and Prevotella spp.: friend or foe? A systematic literature review
During this global pandemic of the COVID-19 disease, a lot of information has arisen in the media and online without scientific validation, and among these is the possibility that this disease could be aggravated by a secondary bacterial infection such as Prevotella, as well as the interest or not in using azithromycin, a potentially active antimicrobial agent. The aim of this study was to carry out a systematic literature review, to prove or disprove these allegations by scientific arguments. The search included Medline, PubMed, and Pubtator Central databases for English-language articles published 1999–2021. After removing duplicates, a total of final eligible studies (n=149) were selected. There were more articles showing an increase of Prevotella abundance in the presence of viral infection like that related to Human Immunodeficiency Virus (HIV), Papillomavirus (HPV), Herpesviridae and respiratory virus, highlighting differences according to methodologies and patient groups. The arguments for or against the use of azithromycin are stated in light of the results of the literature, showing the role of intercurrent factors, such as age, drug consumption, the presence of cancer or periodontal diseases. However, clinical trials are lacking to prove the direct link between the presence of Prevotella spp. and a worsening of COVID-19, mainly those using azithromycin alone in this indication.
-
-
-
SARS-CoV-2 variants of concern alpha, beta, gamma and delta have extended ACE2 receptor host ranges
Following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in PR China in late 2019 a number of variants have emerged, with two of these – alpha and delta – subsequently growing to global prevalence. One characteristic of these variants are changes within the spike protein, in particular the receptor-binding domain (RBD). From a public health perspective, these changes have important implications for increased transmissibility and immune escape; however, their presence could also modify the intrinsic host range of the virus. Using viral pseudotyping, we examined whether the variants of concern (VOCs) alpha, beta, gamma and delta have differing host angiotensin-converting enzyme 2 (ACE2) receptor usage patterns, focusing on a range of relevant mammalian ACE2 proteins. All four VOCs were able to overcome a previous restriction for mouse ACE2, with demonstrable differences also seen for individual VOCs with rat, ferret or civet ACE2 receptors, changes that we subsequently attributed to N501Y and E484K substitutions within the spike RBD.
-
-
-
Second infection with SARS-CoV-2 wild-type is associated with increased disease burden after primary SARS-CoV-2/HBoV-1 coinfection, Cologne, Germany
SARS-CoV-2 is the cause of the still-ongoing COVID-19 pandemic. To date reports on re-infections after full recovery from a previous COVID-19 course remain limited due to the fact that re-infections or second infections occur at the earliest between 3 to 24 months after full recovery while the pandemic lasts only since a year. Even less data are available on re-infections associated with emerging variants.
A 33-year-old previously healthy male patient was tested twice SARS-CoV-2 RNA positive with an 8 months symptom-free interval between the two COVID-19 episodes in our setting in Cologne, Germany. While the first episode was accompanied by a co-detection of human bocavirus and hardly any symptoms, the second episode was characterized by serious illness and severe flu-like symptoms, although hospitalization was not required. After the first episode no residual viral RNA was detected after the patient was released from quarantine. Follow up of the patient revealed a moderate but significant reduction of the lung volume and slightly impaired diffusion capacity.
Conclusion. While it is known that re-infections with SARS-CoV-2 may occur this is the first report of a co-detection of human bocavirus (HBoV) during a primary SARS-CoV-2 infection. The first, hardly symptomatic episode showed that co-infections do not necessarily initiate severe COVID-19 courses. The second more severe episode with serious flu-like symptoms could be explained by the sustained mild damage of the airways during the primary infection.
-
-
-
Selection and T-cell antigenicity of synthetic long peptides derived from SARS-CoV-2
More LessThe pandemic caused by SARS-CoV-2 has led to the successful development of effective vaccines however the prospect of variants of SARS-CoV-2 and future coronavirus outbreaks necessitates the investigation of other vaccine strategies capable of broadening vaccine mediated T-cell responses and potentially providing cross-immunity. In this study the SARS-CoV-2 proteome was assessed for clusters of immunogenic epitopes restricted to diverse human leucocyte antigen. These regions were then assessed for their conservation amongst other coronaviruses representative of different alpha and beta coronavirus genera. Sixteen highly conserved peptides containing numerous HLA class I and II restricted epitopes were synthesized from these regions and assessed in vitro for their antigenicity against T-cells from individuals with previous SARS-CoV-2 infection. Monocyte derived dendritic cells were generated from these peripheral blood mononuclear cells (PBMC), loaded with SARS-CoV-2 peptides, and used to induce autologous CD4+ and CD8+ T cell activation. The SARS-CoV-2 peptides demonstrated antigenicity against the T-cells from individuals with previous SARS-CoV-2 infection indicating that this approach holds promise as a method to activate anti-SAR-CoV-2 T-cell responses from conserved regions of the virus which are not included in vaccines utilising the Spike protein.
-
-
-
SARS-CoV-2 IgG antibody responses in rt-PCR-positive cases: first report from India
Introduction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody responses remain poorly understood and the clinical utility of serological testing is still unclear.
Aim. To understand the relationship between the antibody response to SARS-CoV-2 infection and the demographics and cycle threshold (C t) values of confirmed RT-PCR patients.
Methodology. A total of 384 serum samples were collected from individuals between 4–6 weeks after confirmed SARS-CoV-2 infection and tested for the development of immunoglobulin class G (IgG) against SARS-CoV-2. The C t values, age, gender and symptoms of the patients were correlated with the development of antibodies.
Results. IgG positivity was found to be 80.2 % (95 % CI, 76.2–84.2). Positivity increased with a decrease in the C t value, with the highest (87.6 %) positivity observed in individuals with C t values <20. The mean (±sd) C t values for IgG positives and negatives were 23.34 (±6.09) and 26.72 (±7.031), respectively. No significant difference was found for demographic characteristics such as age and sex and symptoms and antibody response. The current study is the first of its kind wherein we have assessed the correlation of the RT-PCR C t with the development of IgG against SARS-CoV-2.
Conclusion. Although C t values might not have any relation with the development of symptoms, they are associated with the antibody response among SARS-CoV-2-infected individuals.
-
-
-
Sample collection and transport strategies to enhance yield, accessibility, and biosafety of COVID-19 RT-PCR testing
Introduction. Non-invasive sample collection and viral sterilizing buffers have independently enabled workflows for more widespread COVID-19 testing by reverse-transcriptase polymerase chain reaction (RT-PCR).
Gap statement. The combined use of sterilizing buffers across non-invasive sample types to optimize sensitive, accessible, and biosafe sampling methods has not been directly and systematically compared.
Aim. We aimed to evaluate diagnostic yield across different non-invasive samples with standard viral transport media (VTM) versus a sterilizing buffer eNAT- (Copan diagnostics Murrieta, CA) in a point-of-care diagnostic assay system.
Methods. We prospectively collected 84 sets of nasal swabs, oral swabs, and saliva, from 52 COVID-19 RT-PCR-confirmed patients, and nasopharyngeal (NP) swabs from 37 patients. Nasal swabs, oral swabs, and saliva were placed in either VTM or eNAT, prior to testing with the Xpert Xpress SARS-CoV-2 (Xpert). The sensitivity of each sampling strategy was compared using a composite positive standard.
Results. Swab specimens collected in eNAT showed an overall superior sensitivity compared to swabs in VTM (70 % vs 57 %, P=0.0022). Direct saliva 90.5 %, (95 % CI: 82 %, 95 %), followed by NP swabs in VTM and saliva in eNAT, was significantly more sensitive than nasal swabs in VTM (50 %, P<0.001) or eNAT (67.8 %, P=0.0012) and oral swabs in VTM (50 %, P<0.0001) or eNAT (58 %, P<0.0001). Saliva and use of eNAT buffer each increased detection of SARS-CoV-2 with the Xpert; however, no single sample matrix identified all positive cases.
Conclusion. Saliva and eNAT sterilizing buffer can enhance safe and sensitive detection of COVID-19 using point-of-care GeneXpert instruments.
-
-
-
SARS-CoV-2 replicon for high-throughput antiviral screening
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which is highly pathogenic and classified as a biosafety level 3 (BSL-3) agent, has greatly threatened global health and efficacious antivirals are urgently needed. The high requirement of facilities to manipulate the live virus has limited the development of antiviral study. Here, we constructed a reporter replicon of SARS-CoV-2, which can be handled in a BSL-2 laboratory. The Renilla luciferase activity effectively reflected the transcription and replication levels of the replicon genome. We identified the suitability of the replicon in antiviral screening using the known inhibitors, and thus established the replicon-based high-throughput screening (HTS) assay for SARS-CoV-2. The application of the HTS assay was further validated using a few hit natural compounds, which were screened out in a SARS-CoV-2 induced cytopathic-effect-based HTS assay in our previous study. This replicon-based HTS assay will be a safe platform for SARS-CoV-2 antiviral screening in a BSL-2 laboratory without the live virus.
-
-
-
SARS-CoV-2 one year on: evidence for ongoing viral adaptation
More LessSARS-CoV-2 is thought to have originated in the human population from a zoonotic spillover event. Infection in humans results in a variety of outcomes ranging from asymptomatic cases to the disease COVID-19, which can have significant morbidity and mortality, with over two million confirmed deaths worldwide as of January 2021. Over a year into the pandemic, sequencing analysis has shown that variants of SARS-CoV-2 are being selected as the virus continues to circulate widely within the human population. The predominant drivers of genetic variation within SARS-CoV-2 are single nucleotide polymorphisms (SNPs) caused by polymerase error, potential host factor driven RNA modification, and insertion/deletions (indels) resulting from the discontinuous nature of viral RNA synthesis. While many mutations represent neutral ‘genetic drift’ or have quickly died out, a subset may be affecting viral traits such as transmissibility, pathogenicity, host range, and antigenicity of the virus. In this review, we summarise the current extent of genetic change in SARS-CoV-2, particularly recently emerging variants of concern, and consider the phenotypic consequences of this viral evolution that may impact the future trajectory of the pandemic.
-
-
-
SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), emerged at the end of 2019 and by mid-June 2020 the virus had spread to at least 215 countries, caused more than 8 000 000 confirmed infections and over 450 000 deaths, and overwhelmed healthcare systems worldwide. Like severe acute respiratory syndrome coronavirus (SARS-CoV), which emerged in 2002 and caused a similar disease, SARS-CoV-2 is a betacoronavirus. Both viruses use human angiotensin-converting enzyme 2 (hACE2) as a receptor to enter cells. However, the SARS-CoV-2 spike (S) glycoprotein has a novel insertion that generates a putative furin cleavage signal and this has been postulated to expand the host range. Two low-passage (P) strains of SARS-CoV-2 (Wash1 : P4 and Munich : P1) were cultured twice in Vero E6 cells and characterized virologically. Sanger and MinION sequencing demonstrated significant deletions in the furin cleavage signal of Wash1 : P6 and minor variants in the Munich : P3 strain. Cleavage of the S glycoprotein in SARS-CoV-2-infected Vero E6 cell lysates was inefficient even when an intact furin cleavage signal was present. Indirect immunofluorescence demonstrated that the S glycoprotein reached the cell surface. Since the S protein is a major antigenic target for the development of neutralizing antibodies, we investigated the development of neutralizing antibody titres in serial serum samples obtained from COVID-19 human patients. These were comparable regardless of the presence of an intact or deleted furin cleavage signal. These studies illustrate the need to characterize virus stocks meticulously prior to performing either in vitro or in vivo pathogenesis studies.
-
-
-
SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology
The sudden emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 from the Chinese province of Hubei and its subsequent pandemic spread highlight the importance of understanding the full molecular details of coronavirus infection and pathogenesis. Here, we compared a variety of replication features of SARS-CoV-2 and SARS-CoV and analysed the cytopathology caused by the two closely related viruses in the commonly used Vero E6 cell line. Compared to SARS-CoV, SARS-CoV-2 generated higher levels of intracellular viral RNA, but strikingly about 50-fold less infectious viral progeny was recovered from the culture medium. Immunofluorescence microscopy of SARS-CoV-2-infected cells established extensive cross-reactivity of antisera previously raised against a variety of non-structural proteins, membrane and nucleocapsid protein of SARS-CoV. Electron microscopy revealed that the ultrastructural changes induced by the two SARS viruses are very similar and occur within comparable time frames after infection. Furthermore, we determined that the sensitivity of the two viruses to three established inhibitors of coronavirus replication (remdesivir, alisporivir and chloroquine) is very similar, but that SARS-CoV-2 infection was substantially more sensitive to pre-treatment of cells with pegylated interferon alpha. An important difference between the two viruses is the fact that – upon passaging in Vero E6 cells – SARS-CoV-2 apparently is under strong selection pressure to acquire adaptive mutations in its spike protein gene. These mutations change or delete a putative furin-like cleavage site in the region connecting the S1 and S2 domains and result in a very prominent phenotypic change in plaque assays.
-
-
-
Severe acute respiratory syndrome coronavirus papain-like protease suppressed alpha interferon-induced responses through downregulation of extracellular signal-regulated kinase 1-mediated signalling pathways
Severe acute respiratory syndrome coronavirus (SARS-CoV) papain-like protease (PLpro), a deubiquitinating enzyme, reportedly blocks poly I : C-induced activation of interferon regulatory factor 3 and nuclear factor kappa B, reducing interferon (IFN) induction. This study investigated type I IFN antagonist mechanism of PLpro in human promonocytes. PLpro antagonized IFN-α-induced responses such as interferon-stimulated response element- and AP-1-driven promoter activation, protein kinase R, 2′-5′-oligoadenylate synthetase (OAS), interleukin (IL)-6 and IL-8 expression, and signal transducers and activators of transcription (STAT) 1 (Tyr701), STAT1 (Ser727) and c-Jun phosphorylation. A proteomics approach demonstrated downregulation of extracellular signal-regulated kinase (ERK) 1 and upregulation of ubiquitin-conjugating enzyme (UBC) E2-25k as inhibitory mechanism of PLpro on IFN-α-induced responses. IFN-α treatment significantly induced mRNA expression of UBC E2-25k, but not ERK1, causing time-dependent decrease of ERK1, but not ERK2, in PLpro-expressing cells. Poly-ubiquitination of ERK1 showed a relationship between ERK1 and ubiquitin proteasome signalling pathways associated with IFN antagonism by PLpro. Combination treatment of IFN-α and the proteasome inhibitor MG-132 showed a time-dependent restoration of ERK1 protein levels and significant increase of ERK1, STAT1 and c-Jun phosphorylation in PLpro-expressing cells. Importantly, PD098059 (an ERK1/2 inhibitor) treatment significantly reduced IFN-α-induced ERK1 and STAT1 phosphorylation, inhibiting IFN-α-induced expression of 2′-5′-OAS in vector control cells and PLpro-expressing cells. Overall results proved downregulation of ERK1 by ubiquitin proteasomes and suppression of interaction between ERK1 and STAT1 as type I IFN antagonist function of SARS-CoV PLpro.
-
-
-
Sites of feline coronavirus persistence in healthy cats
More LessFeline coronavirus (FCoV) is transmitted via the faecal–oral route and primarily infects enterocytes, but subsequently spreads by monocyte-associated viraemia. In some infected cats, virulent virus mutants induce feline infectious peritonitis (FIP), a fatal systemic disease that can develop in association with viraemia. Persistently infected, healthy carriers are believed to be important in the epidemiology of FIP, as they represent a constant source of FCoV, shed either persistently or intermittently in faeces. So far, the sites of virus persistence have not been determined definitely. The purpose of this study was to examine virus distribution and viral load in organs and gut compartments of specified-pathogen-free cats, orally infected with non-virulent type I FCoV, over different time periods and with or without detectable viraemia. The colon was identified as the major site of FCoV persistence and probable source for recurrent shedding, but the virus was shown also to persist in several other organs, mainly in tissue macrophages. These might represent additional sources for recurrent viraemia.
-
-
-
Severe acute respiratory syndrome coronavirus nucleocapsid protein does not modulate transcription of the human FGL2 gene
More LessAmong the structural and nonstructural proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), the nucleocapsid (N) protein plays pivotal roles in the biology and pathogenesis of viral infection. N protein is thought to dysregulate cell signalling and the transcription of cellular genes, including FGL2, which encodes a prothrombinase implicated in vascular thrombosis, fibrin deposition and pneumocyte necrosis. Here, we showed that N protein expressed in cultured human cells was predominantly found in the cytoplasm and was competent in repressing the transcriptional activity driven by interferon-stimulated response elements. However, the expression of N protein did not influence the transcription from the FGL2 promoter. More importantly, N protein did not modulate the expression of FGL2 mRNA or protein in transfected or SARS-CoV-infected cells. Taken together, our findings did not support the model in which SARS-CoV N protein specifically modulates transcription of the FGL2 gene to cause fibrosis and vascular thrombosis.
-
-
-
Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation
More LessThe molecular mechanisms governing severe acute respiratory syndrome coronavirus-induced pathology are not fully understood. Virus infection and some individual viral proteins, including the 3a protein, induce apoptosis. However, the cellular targets leading to 3a protein-mediated apoptosis have not been fully characterized. This study showed that the 3a protein modulates the mitochondrial death pathway in two possible ways. Activation of caspase-8 through extrinsic signal(s) caused Bid activation. In the intrinsic pathway, there was activation of caspase-9 and cytochrome c release from the mitochondria. This was the result of increased Bax oligomerization and higher levels of p53 in 3a protein-expressing cells, which depended on the activation of p38 MAP kinase (MAPK) in these cells. For p38 activation and apoptosis induction, the 3a cytoplasmic domain was sufficient. In direct Annexin V staining assays, the 3a protein-expressing cells showed increased apoptosis that was attenuated with the p38 MAPK inhibitor SB203580. A block in nuclear translocation of the STAT3 transcription factor in cells expressing the 3a protein was also observed. These results have been used to present a model of 3a-mediated apoptosis.
-
-
-
Severe acute respiratory syndrome coronavirus Orf3a protein interacts with caveolin
The orf3a (also called X1 or U274) gene is the largest unique open reading frame in the severe acute respiratory syndrome coronavirus genome and has been proposed to encode a protein with three transmembrane domains and a large cytoplasmic domain. Recent work has suggested that the 3a protein may play a structural role in the viral life cycle, although the mechanisms for this remain uncharacterized. Here, the expression of the 3a protein in various in vitro systems is shown, it has been localized to the Golgi region and its membrane topology in transfected cells has been confirmed. Three potential caveolin-1-binding sites were reported to be present in the 3a protein. By using various biochemical, biophysical and genetic techniques, interaction of the 3a protein with caveolin-1 is demonstrated. Any one of the potential sites in the 3a protein was sufficient for this interaction. These results are discussed with respect to the possible roles of the 3a protein in the viral life cycle.
-
-
-
Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein
The coronavirus nucleocapsid (N) protein is a viral RNA-binding protein with multiple functions in terms of virus replication and modulating cell signalling pathways. N protein is composed of three distinct regions containing RNA-binding motif(s), and appropriate signals for modulating cell signalling. The subcellular localization of severe acute respiratory syndrome coronavirus (SARS-CoV) N protein was studied. In infected cells, SARS-CoV N protein localized exclusively to the cytoplasm. In contrast to the avian coronavirus N protein, overexpressed SARS-CoV N protein remained principally localized to the cytoplasm, with very few cells exhibiting nucleolar localization. Bioinformatic analysis and deletion mutagenesis coupled to confocal microscopy and live-cell imaging, revealed that SARS-CoV N protein regions I and III contained nuclear localization signals and region II contained a nucleolar retention signal. However, cytoplasmic localization was directed by region III and was the dominant localization signal in the protein.
-
-
-
A single immunization with a rhabdovirus-based vector expressing severe acute respiratory syndrome coronavirus (SARS-CoV) S protein results in the production of high levels of SARS-CoV-neutralizing antibodies
Foreign viral proteins expressed by rabies virus (RV) have been shown to induce potent humoral and cellular immune responses in immunized animals. In addition, highly attenuated and, therefore, very safe RV-based vectors have been constructed. Here, an RV-based vaccine vehicle was utilized as a novel vaccine against severe acute respiratory syndrome coronavirus (SARS-CoV). For this approach, the SARS-CoV nucleocapsid protein (N) or envelope spike protein (S) genes were cloned between the RV glycoprotein G and polymerase L genes. Recombinant vectors expressing SARS-CoV N or S protein were recovered and their immunogenicity was studied in mice. A single inoculation with the RV-based vaccine expressing SARS-CoV S protein induced a strong SARS-CoV-neutralizing antibody response. The ability of the RV-SARS-CoV S vector to confer immunity after a single inoculation makes this live vaccine a promising candidate for eradication of SARS-CoV in animal reservoirs, thereby reducing the risk of transmitting the infection to humans.
-
-
-
Severe acute respiratory syndrome coronavirus nucleocapsid protein expressed by an adenovirus vector is phosphorylated and immunogenic in mice
Severe acute respiratory syndrome coronavirus (SARS-CoV) has been identified as the aetiological agent of SARS. Thus, vaccination against SARS-CoV may represent an effective approach towards controlling SARS. The nucleocapsid (N) protein is thought to play a role in induction of cell-mediated immunity to SARS-CoV and thus it is important to characterize this protein. In the present study, an E1/partially E3-deleted, replication-defective human adenovirus 5 (Ad5) vector (Ad5-N-V) expressing the SARS-CoV N protein was constructed. The N protein, expressed in vitro by Ad5-N-V, was of the expected molecular mass of 50 kDa and was phosphorylated. Vaccination of C57BL/6 mice with Ad5-N-V generated potent SARS-CoV-specific humoral and T cell-mediated immune responses. These results show that Ad5-N-V may potentially be used as a SARS-CoV vaccine.
-
-
-
Sequence of the 3′-terminal end (8·1 kb) of the genome of porcine haemagglutinating encephalomyelitis virus: comparison with other haemagglutinating coronaviruses
More LessA cytopathogenic coronavirus, serologically identified as porcine haemagglutinating encephalomyelitis virus (HEV), has recently been associated with acute outbreaks of wasting and encephalitis in nursing piglets from pig farms in southern Québec and Ontario, Canada. The 3′-terminal end of the genome of the prototype HEV-67N strain and that of the recent Québec IAF-404 field isolate, both propagated in HRT-18 cells, were sequenced. Overall, sequencing data indicated that HEV has remained antigenically and genetically stable since its first isolation in North America in 1962. Compared with the prototype strain of bovine enteropathogenic coronavirus (BCoV), HEV, as well as the human respiratory coronavirus (HCoV-OC43) showed a major deletion in their ORF4 gene. Deduced amino acid sequences for both HEV strains revealed 89/88, 80, 93/92 and 95/94% identities with the structural proteins HE, S, M and N of BCoV and HCoV-OC43, respectively. Major variations were observed in the S1 portion of the S gene of both HEV strains, with only 73/71% amino acid identities compared with those of the two other haemagglutinating coronaviruses.
-