Coronaviruses

Coronaviruses are a large family of viruses that can infect a range of hosts. They are known to cause diseases including the common cold, Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in humans.
In January 2020, China saw an outbreak of a new coronavirus strain now named SARS-CoV-2. Although the animal reservoir for the SARS and MERS viruses are known, this has yet to have been confirmed for SARS-CoV-2. All three strains are transmissible between humans.
To allow the widest possible distribution of relevant research, the Microbiology Society has brought together articles from across our portfolio and made this content freely available.
Image credit: "MERS-CoV" by NIAID is licensed under CC BY 2.0, this image has been modified.
Collection Contents
-
-
Replacement of the Alpha variant of SARS-CoV-2 by the Delta variant in Lebanon between April and June 2021
Georgi Merhi, Alexander J. Trotter, Leonardo de Oliveira Martins, Jad Koweyes, Thanh Le-Viet, Hala Abou Naja, Mona Al Buaini, Sophie J. Prosolek, Nabil-Fareed Alikhan, Martin Lott, Tatiana Tohmeh, Bassam Badran, Orla J. Jupp, Sarah Gardner, Matthew W. Felgate, Kate A. Makin, Janine M. Wilkinson, Rachael Stanley, Abdul K. Sesay, Mark A. Webber, Rose K. Davidson, Nada Ghosn, Mark Pallen, Hamad Hasan, Andrew J. Page and Sima TokajianThe COVID-19 pandemic continues to expand globally, with case numbers rising in many areas of the world, including the Eastern Mediterranean Region. Lebanon experienced its largest wave of COVID-19 infections from January to April 2021. Limited genomic surveillance was undertaken, with just 26 SARS-CoV-2 genomes available for this period, nine of which were from travellers from Lebanon detected by other countries. Additional genome sequencing is thus needed to allow surveillance of variants in circulation. In total, 905 SARS-CoV-2 genomes were sequenced using the ARTIC protocol. The genomes were derived from SARS-CoV-2-positive samples, selected retrospectively from the sentinel COVID-19 surveillance network, to capture diversity of location, sampling time, sex, nationality and age. Although 16 PANGO lineages were circulating in Lebanon in January 2021, by February there were just four, with the Alpha variant accounting for 97 % of samples. In the following 2 months, all samples contained the Alpha variant. However, this had changed dramatically by June and July 2021, when all samples belonged to the Delta variant. This study documents a ten-fold increase in the number of SARS-CoV-2 genomes available from Lebanon. The Alpha variant, first detected in the UK, rapidly swept through Lebanon, causing the country's largest wave to date, which peaked in January 2021. The Alpha variant was introduced to Lebanon multiple times despite travel restrictions, but the source of these introductions remains uncertain. The Delta variant was detected in Gambia in travellers from Lebanon in mid-May, suggesting community transmission in Lebanon several weeks before this variant was detected in the country. Prospective sequencing in June/July 2021 showed that the Delta variant had completely replaced the Alpha variant in under 6 weeks.
-
-
-
Reporting of RT-PCR cycle threshold (Ct) values during the first wave of COVID-19 in Qatar improved result interpretation in clinical and public health settings
Peter V. Coyle, Naema Hassan Al Molawi, Mohamed Ali Ben Hadj Kacem, Reham Awni El Kahlout, Einas Al Kuwari, Abdullatif Al Khal, Imtiaz Gillani, Andrew Jeremijenko, Hatoun Saeb, Mohammad Al Thani, Roberto Bertollini, Hanan F. Abdul Rahim, Hiam Chemaitelly, Patrick Tang, Ali Nizar Latif, Saad Al Kaabi, Muna A. Rahman S. Al Maslamani, Brendan David Morris, Nasser Al-Ansari, Anvar Hassan Kaleeckal and Laith J. Abu RaddadIntroduction. The cycle threshold (Ct) value in real-time PCR (RT-PCR) is where a target-specific amplification signal becomes detectable and can infer viral load, risk of transmission and recovery. Use of Ct values in routine practice is uncommon.
Gap Statement. There is a lack of routine use of Ct values when reporting RT-PCR results in routine practice.
Aim. To automatically insert Ct values and interpretive comments when reporting SARS-CoV-2 RT-PCR to improve patient management.
Methodology. Routine Ct values across three different RT-PCR platforms were reviewed for concordance at presentation and clearance in patients with COVID-19. An indicative threshold (IT) linked to viral clearance kinetics was defined at Ct30 to categorize Ct values as low and high, reflecting high and low viral loads respectively.
Results. The different gene targets of each platform showed high correlation and kappa score agreement (P<0.001). Average Ct values were automatically generated with values ≤Ct30 reported as positive and >Ct30 as reactive; interpretive comments were added to all reports. The new reporting algorithm impacted on: physician interpretation of SARS-CoV-2 results; patient management and transfer; staff surveillance; length of stay in quarantine; and redefinition of patient recovery.
Conclusion. Incorporation of Ct values into routine practice is possible across different RT-PCR platforms and adds useful information for patient management. The use of an IT with interpretive comments improves clinical interpretation and could be a model for reporting other respiratory infections. Withholding Ct values wastes useful clinical data and should be reviewed by the profession, accreditation bodies and regulators.
-
-
-
Retrospective screening of routine respiratory samples revealed undetected community transmission and missed intervention opportunities for SARS-CoV-2 in the United Kingdom
Joseph G. Chappell, Theocharis Tsoleridis, Gemma Clark, Louise Berry, Nadine Holmes, Christopher Moore, Matthew Carlile, Fei Sang, Bisrat J. Debebe, Victoria Wright, William L. Irving, Brian J. Thomson, Timothy C. J. Boswell, Iona Willingham, Amelia Joseph, Wendy Smith, Manjinder Khakh, Vicki M. Fleming, Michelle M. Lister, Hannah C. Howson-Wells, Edward C. Holmes, Matthew W. Loose, Jonathan K. Ball, C. Patrick McClure and on behalf of the COG-UK consortiumIn the early phases of the SARS coronavirus type 2 (SARS-CoV-2) pandemic, testing focused on individuals fitting a strict case definition involving a limited set of symptoms together with an identified epidemiological risk, such as contact with an infected individual or travel to a high-risk area. To assess whether this impaired our ability to detect and control early introductions of the virus into the UK, we PCR-tested archival specimens collected on admission to a large UK teaching hospital who retrospectively were identified as having a clinical presentation compatible with COVID-19. In addition, we screened available archival specimens submitted for respiratory virus diagnosis, and dating back to early January 2020, for the presence of SARS-CoV-2 RNA. Our data provides evidence for widespread community circulation of SARS-CoV-2 in early February 2020 and into March that was undetected at the time due to restrictive case definitions informing testing policy. Genome sequence data showed that many of these early cases were infected with a distinct lineage of the virus. Sequences obtained from the first officially recorded case in Nottinghamshire - a traveller returning from Daegu, South Korea – also clustered with these early UK sequences suggesting acquisition of the virus occurred in the UK and not Daegu. Analysis of a larger sample of sequences obtained in the Nottinghamshire area revealed multiple viral introductions, mainly in late February and through March. These data highlight the importance of timely and extensive community testing to prevent future widespread transmission of the virus.
-
-
-
Re-opening hairdressing salons, barber shops and gyms following COVID-19 lockdown: reducing risks from Legionella species through successful domestic steam disinfection of showerheads
More LessGiven the importance of disinfecting showerheads from Legionella species and the lack of instructions as to how to successfully achieve this, the aim of this study was to examine the ability of domestic steam disinfection to successfully disinfect showerheads from Legionella species. Steam disinfection of Legionella pneumophila [n=3; L. pneumophila serogroup 2–15 (wildtype environmental water isolate); L. pneumophila serogroup 1 NCTC11192 (reference strain); L. pneumophila serogroup 1 (wildtype environmental water isolate)], L. erythra (wildtype environmental water isolate) and L. bozemanii CRM11368M (reference strain) were examined in this study. Steam disinfection employing a baby bottle steam disinfector device eradicated all Legionella organisms tested. Steam disinfection, when performed properly under the manufacturer’s instructions, offers a relatively inexpensive, simple, versatile and widely available technology for the elimination of Legionella species from contaminated showerheads. We therefore advocate the employment of such devices to regularly disinfect showerheads and shower tubing in hairdressing salons, barber shops and gyms, as a critical control in the elimination of these organisms from these sources, thereby enhancing customer/client/staff safety.
-
-
-
Recombinant infectious bronchitis viruses expressing heterologous S1 subunits: potential for a new generation of vaccines that replicate in Vero cells
More LessThe spike glycoprotein (S) of infectious bronchitis virus (IBV) comprises two subunits, S1 and S2. We have previously demonstrated that the S2 subunit of the avirulent Beau-R strain is responsible for its extended cellular tropism for Vero cells. Two recombinant infectious bronchitis viruses (rIBVs) have been generated; the immunogenic S1 subunit is derived from the IBV vaccine strain, H120, or the virulent field strain, QX, within the genetic background of Beau-R. The rIBVs BeauR-H120(S1) and BeauR-QX(S1) are capable of replicating in primary chicken kidney cell cultures and in Vero cells. These results demonstrate that rIBVs are able to express S1 subunits from genetically diverse strains of IBV, which will enable the rational design of a future generation of IBV vaccines that may be grown in Vero cells.
-
-
-
A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective
More LessThere have been 2040 laboratory-confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) in 27 countries, with a mortality rate of 34.9 %. There is no specific therapy. The current therapies have mainly been adapted from severe acute respiratory syndrome (SARS-CoV) treatments, including broad-spectrum antibiotics, corticosteroids, interferons, ribavirin, lopinavir–ritonavir or mycophenolate mofetil, and have not been subject to well-organized clinical trials. The development of specific therapies and vaccines is therefore urgently required. We examine existing and potential therapies and vaccines from a molecular perspective. These include viral S protein targeting; inhibitors of host proteases, including TMPRSS2, cathepsin L and furin protease, and of viral M(pro) and the PL(pro) proteases; convalescent plasma; and vaccine candidates. The Medline database was searched using combinations and variations of terms, including ‘Middle East respiratory syndrome coronavirus’, ‘MERS-CoV’, ‘SARS’, ‘therapy’, ‘molecular’, ‘vaccine’, ‘prophylactic’, ‘S protein’, ‘DPP4’, ‘heptad repeat’, ‘protease’, ‘inhibitor’, ‘anti-viral’, ‘broad-spectrum’, ‘interferon’, ‘convalescent plasma’, ‘lopinavir ritonavir’, ‘antibodies’, ‘antiviral peptides’ and ‘live attenuated viruses’. There are many options for the development of MERS-CoV-specific therapies. Currently, MERS-CoV is not considered to have pandemic potential. However, the high mortality rate and potential for mutations that could increase transmissibility give urgency to the search for direct, effective therapies. Well-designed and controlled clinical trials are needed, both for existing therapies and for prospective direct therapies.
-
-
-
A review of genetic methods and models for analysis of coronavirus-induced severe pneumonitis
More LessCoronaviruses (CoVs) have been studied for over 60 years, but have only recently gained notoriety as deadly human pathogens with the emergence of severe respiratory syndrome CoV and Middle East respiratory syndrome virus. The rapid emergence of these viruses has demonstrated the need for good models to study severe CoV respiratory infection and pathogenesis. There are, currently, different methods and models for the study of CoV disease. The available genetic methods for the study and evaluation of CoV genetics are reviewed here. There are several animal models, both mouse and alternative animals, for the study of severe CoV respiratory disease that have been examined, each with different pros and cons relative to the actual pathogenesis of the disease in humans. A current limitation of these models is that no animal model perfectly recapitulates the disease seen in humans. Through the review and analysis of the available disease models, investigators can employ the most appropriate available model to study various aspects of CoV pathogenesis and evaluate possible antiviral treatments that may potentially be successful in future treatment and prevention of severe CoV respiratory infections.
-
-
-
Role of the lipid rafts in the life cycle of canine coronavirus
More LessCoronaviruses are enveloped RNA viruses that have evolved complex relationships with their host cells, and modulate their lipid composition, lipid synthesis and signalling. Lipid rafts, enriched in sphingolipids, cholesterol and associated proteins, are special plasma membrane microdomains involved in several processes in viral infections. The extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to lipid rafts. Because cholesterol-rich microdomains appear to be a general feature of the entry mechanism of non-eneveloped viruses and of several coronaviruses, the purpose of this study was to analyse the contribution of lipids to the infectivity of canine coronavirus (CCoV). The CCoV life cycle is closely connected to plasma membrane cholesterol, from cell entry to viral particle production. The methyl-β-cyclodextrin (MβCD) was employed to remove cholesterol and to disrupt the lipid rafts. Cholesterol depletion from the cell membrane resulted in a dose-dependent reduction, but not abolishment, of virus infectivity, and at a concentration of 15 mM, the reduction in the infection rate was about 68 %. MβCD treatment was used to verify if cholesterol in the envelope was required for CCoV infection. This resulted in a dose-dependent inhibitory effect, and at a concentration of 9 mM MβCD, infectivity was reduced by about 73 %. Since viral entry would constitute a target for antiviral strategies, inhibitory molecules interacting with viral and/or cell membranes, or interfering with lipid metabolism, may have strong antiviral potential. It will be interesting in the future to analyse the membrane microdomains in the CCoV envelope.
-
-
-
Role of sialic acids in feline enteric coronavirus infections
To initiate infections, many coronaviruses use sialic acids, either as receptor determinants or as attachment factors helping the virus find its receptor underneath the heavily glycosylated mucus layer. In the present study, the role of sialic acids in serotype I feline enteric coronavirus (FECV) infections was studied in feline intestinal epithelial cell cultures. Treatment of cells with neuraminidase (NA) enhanced infection efficiency, showing that terminal sialic acid residues on the cell surface were not receptor determinants and even hampered efficient virus–receptor engagement. Knowing that NA treatment of coronaviruses can unmask viral sialic acid binding activity, replication of untreated and NA-treated viruses was compared, showing that NA treatment of the virus enhanced infectivity in untreated cells, but was detrimental in NA-treated cells. By using sialylated compounds as competitive inhibitors, it was demonstrated that sialyllactose (2,6-α-linked over 2,3-α-linked) notably reduced infectivity of NA-treated viruses, whereas bovine submaxillary mucin inhibited both treated and untreated viruses. In desialylated cells, however, viruses were less prone to competitive inhibition with sialylated compounds. In conclusion, this study demonstrated that FECV had a sialic acid binding capacity, which was partially masked by virus-associated sialic acids, and that attachment to sialylated compounds could facilitate enterocyte infections. However, sialic acid binding was not a prerequisite for the initiation of infection and virus–receptor engagement was even more efficient after desialylation of cells, indicating that FECV requires sialidases for efficient enterocyte infections.
-
-
-
Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63
Like severe acute respiratory syndrome coronavirus (SARS-CoV), human coronavirus (HCoV)-NL63 employs angiotensin-converting enzyme 2 (ACE2) as a receptor for cellular entry. SARS-CoV infection causes robust downregulation of cellular ACE2 expression levels and it has been suggested that the SARS-CoV effect on ACE2 is involved in the severity of disease. We investigated whether cellular ACE2 downregulation occurs at optimal replication conditions of HCoV-NL63 infection. The expression of the homologue of ACE2, the ACE protein not used as a receptor by HCoV-NL63, was measured as a control. A specific decrease for ACE2 protein level was observed when HCoV-NL63 was cultured at 34 °C. Culturing the virus at the suboptimal temperature of 37 °C resulted in low replication of the virus and the effect on ACE2 expression was lost. We conclude that the decline of ACE2 expression is dependent on the efficiency of HCoV-NL63 replication, and that HCoV-NL63 and SARS-CoV both affect cellular ACE2 expression during infection.
-
-
-
Rat respiratory coronavirus infection: replication in airway and alveolar epithelial cells and the innate immune response
The rat coronavirus sialodacryoadenitis virus (SDAV) causes respiratory infection and provides a system for investigating respiratory coronaviruses in a natural host. A viral suspension in the form of a microspray aerosol was delivered by intratracheal instillation into the distal lung of 6–8-week-old Fischer 344 rats. SDAV inoculation produced a 7 % body weight loss over a 5 day period that was followed by recovery over the next 7 days. SDAV caused focal lesions in the lung, which were most severe on day 4 post-inoculation (p.i.). Immunofluorescent staining showed that four cell types supported SDAV virus replication in the lower respiratory tract, namely Clara cells, ciliated cells in the bronchial airway and alveolar type I and type II cells in the lung parenchyma. In bronchial alveolar lavage fluid (BALF) a neutrophil influx increased the population of neutrophils to 45 % compared with 6 % of the cells in control samples on day 2 after mock inoculation. Virus infection induced an increase in surfactant protein SP-D levels in BALF of infected rats on days 4 and 8 p.i. that subsided by day 12. The concentrations of chemokines MCP-1, LIX and CINC-1 in BALF increased on day 4 p.i., but returned to control levels by day 8. Intratracheal instillation of rats with SDAV coronavirus caused an acute, self-limited infection that is a useful model for studying the early events of the innate immune response to respiratory coronavirus infections in lungs of the natural virus host.
-
-
-
Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA
A previously unknown coronavirus (CoV) is the aetiological agent causing severe acute respiratory syndrome (SARS), for which an effective antiviral treatment is urgently needed. To enable the rapid and biosafe identification of coronavirus replicase inhibitors, we have generated a non-cytopathic, selectable replicon RNA (based on human CoV 229E) that can be stably maintained in eukaryotic cells. Most importantly, the replicon RNA mediates reporter gene expression as a marker for coronavirus replication. We have used a replicon RNA-containing cell line to test the inhibitory effect of several compounds that are currently being assessed for SARS treatment. Amongst those, interferon-α displayed the strongest inhibitory activity. Our results demonstrate that coronavirus replicon cell lines provide a versatile and safe assay for the identification of coronavirus replicase inhibitors. Once this technology is adapted to SARS-CoV replicon RNAs, it will allow high throughput screening for SARS-CoV replicase inhibitors without the need to grow infectious SARS-CoV.
-
-
-
The region between the M and S genes of porcine haemagglutinating encephalomyelitis virus is highly similar to human coronavirus OC43
More LessThe nucleotide sequences of the regions between the membrane and spike protein genes of three strains of porcine haemagglutinating encephalomyelitis virus (HEV) were determined. A total of 739 (HEV strain 67N) and 751 (strains NT9 and VW572) nucleotides were sequenced. Two ORFs, potentially encoding proteins of 12.8 and 9.6 kDa, were identified. Pairwise comparisons with the corresponding ORFs in bovine coronavirus (BCV) and human coronavirus (HCV) OC43 revealed sequence similarities of greater than 88.5% at the nucleotide and 85.3% at the amino acid level for the 12.8 kDa ORF product. For the 9.6 kDa ORF product similarities were greater than 96.9% and 95.2%, respectively. An additional 12 nucleotide deletion upstream of the 12.8 kDa ORF start codon was found in HEV 67N compared to NT9 and VW572. These results reveal a genomic organization of HEV in the region analysed that is homologous to HCV OC43 but different from BCV.
-
-
-
A region of the coronavirus infectious bronchitis virus 1a polyprotein encoding the 3C-like protease domain is subject to rapid turnover when expressed in rabbit reticulocyte lysate
More LessIn order to investigate the mechanisms involved in the processing of infectious bronchitis virus polyproteins, several candidate regions of the genome have been cloned and expressed in vitro. During these studies it was observed that the translation product encoded by one of these clones (pKT205) was poorly expressed. Biochemical and genetic analyses revealed that the basis for the poor expression was a post-translational event involving ubiquitination of the protein and degradation by an ATP-dependent system operating in the reticulocyte lysate used for the in vitro expression. Two independently acting regions which conferred instability were identified, one of which mapped to the predicted 3C protease domain, contained within the 5′ end of the clone, while the other, more C-terminal region, was effective in conferring instability upon a heterologous protein to which it had been transferred. These regions may influence the stability of the authentic viral protein(s) in vivo and hence allow for the control of their expression and/or function at the level of proteolysis by cellular protease(s).
-
-
-
Rat Glial C6 Cells are Defective in Murine Coronavirus Internalization
More LessSummaryRat C6 glial cells were resistant to infection by several strains of murine coronaviruses. The restriction was not at the adsorption stage, since virus adsorbed to the C6 cells in a similar manner to mouse L cells which supported a lytic infection. The virus could not be internalized by the C6 cells. However, if the virus was introduced into the C6 cells by polyethylene glycol fusion, viral replication occurred and progeny virions were released from the infected cells. These studies indicated that the C6 cells were restrictive to coronavirus replication by preventing the early penetration stage of the viral replicative cycle.
-
-
-
Replication of Transmissible Gastroenteritis Coronavirus (TGEV) in Swine Alveolar Macrophages
H. Laude, B. Charley and J. GelfiSUMMARYSeveral strains of the enteropathogenic coronavirus transmissible gastroenteritis virus (TGEV) have been shown to replicate in alveolar macrophages maintained in vitro. A distinct cytopathic effect was observed at a multiplicity of infection ≥0.1. Infected cells released infectious virus. The extent of both virus production and cell destruction was highly dependent upon the virus input. At low input, cell viability was affected only slightly, and a delayed and persistent virus production could be observed. TGEV infection of macrophages also led to a marked synthesis of type I interferon. Thus, the possibility that alveolar macrophages act as an extra-intestinal target for TGEV must be considered.
-
-
-
Reactivity of Human Coronavirus OC43 and Neonatal Calf Diarrhoea Coronavirus Membrane-associated Antigens
More LessSUMMARYHuman embryonic lung fibroblast cultures and Vero cell cultures infected with cell culture-adapted strains of human coronavirus (HCV) OC43 or neonatal calf diarrhoea coronavirus (NCDCV) were shown to possess highly cross-reactive membrane-associated antigens (MAA) by the indirect fluorescent antibody technique (IFAMA). MAA appeared 3 h post-infection, concurrently with the appearance of cytoplasmic antigens. Electron microscopic observations of cell cultures infected with either coronavirus strain and labelled with the immunoperoxidase antibody (IPA) technique for MAA detection showed that MAA consisted mainly of a strongly labelled, discontinuous, brush-like layer of amorphous material, strictly associated with the infected cell membrane. By light microscopy, reactivity of MAA with homologous and heterologous immune serum was similar to that of antigens detected by IPA in ethanol-fixed infected cells. IPA and IFAMA, but not haemagglutination-inhibiting (HI) and neutralizing (Nt) antibody, were strongly decreased by absorption of immune sera with trypsin-treated glutaraldehyde-fixed cell cultures infected with homologous virus. MAA IgG antibodies were detected by IFAMA in both human and animal sera. Sera from infants showing an HI and Nt, but not an IPA, antibody response to HCV OC43 were also free of detectable IFAMA antibody to HCV OC43.
-
-
-
Replication of Human Respiratory Coronavirus Strain 229E in Human Macrophages
More LessSUMMARYEvidence for the replication of human coronavirus strain 229E (HCV 229E) in macrophages is presented. Virus antigen was detected in macrophages by an immunofluorescent technique 24 h after infection and virus particles were observed in the cisternae of the endoplasmic reticulum by electron microscopy. Giant cells were observed by light and scanning electron microscopy, and large multinucleate cells were seen by thin-section electron microscopy, suggesting that HCV 229E can induce syncytial formation in cultured human macrophages. Furthermore, the production of infectious virus by macrophages was demonstrated by an infectious centre assay.
-
-
-
Ribonucleoprotein-like Structures from Coronavirus Particles
More LessSUMMARYThe structure of the ribonucleoprotein (RNP) complex of three coronaviruses was investigated. A single-stranded helix of diam. 14 to 16 nm and up to 320 nm in length was released from disrupted particles of human coronavirus strain 229E and mouse hepatitis virus strain 3 after incubation in mild conditions. The helical complexes appeared to be composed of globular subunits with long axes of 5 to 7 nm surrounding a hollow core of diam. 3 to 4 nm. The complexes were shown to be sensitive to both pancreatic RNase and to pronase. No undegraded internal component was obtained from disrupted avian infectious bronchitis virus particles. We conclude that these structures are RNP complexes. The similarity between these RNPs and those of other large lipid containing RNA viruses is discussed.
-