

Review Tool reports

UNDERSTANDING AND CONTEXTUALIZING THE REPORTS

Readers of these automated manuscript Review Tool reports are encouraged to use them to support them in performing their own assessment and 'health check' on a preprint prior to it completing peer review.

However, these should only be used as a guide, read within the overall context of the article itself, and should never replace full peer review. Please ensure you read the article fully alongside these and familiarize yourself with the tools and how they work, using the links provided below.

These reports are published under the terms of the Creative Commons Attribution License

SCISCORE® REPORTS: MDAR CHECKLIST FOR AUTHORS AND SCISCORE CORE REPORT

SciScore^{*} (https://sciscore.com) scans the methodology section of an article for important scientific rigour criteria and key biological resources and highlights if these are accessible or have problems associated. The Materials, Design, Analysis, and Reporting (MDAR) report and Core report generated from this are included here for transparency and can be cited independently using the DOI below.

- Information on the MDAR report: https://sciscore.com/reports/MDAR-Report.php
- Information on the Core report: https://sciscore.com/reports/Core-Report.php

How to cite the SciScore reports for this article:

Asamoah-Boaheng M, Grunau B, Haig S, Karim ME, Kirkham T, *et al.* SciScore reports for: 11-month SARS-CoV-2 immunogenicity decay, and associated factors, among mRNA vaccinees: Implications for Booster Vaccination. *Access Microbiology*. 2023. https://doi.org/10.1099/acmi.0.000678.v1.1

ITHENTICATE® REPORT

iThenticate^{*} (https://www.ithenticate.com) checks the submitted article against an extensive database of articles from the internet and scholarly publications and highlights where similar sentences or phrases have been used previously, including in the author's own published work. Each individual match is given a percentage score based on how much it overlaps with the previously existing work, and an overall similarity score is given. The report generated from this are included here for transparency and can be cited independently using the DOI below.

- FAQs: https://www.ithenticate.com/products/faqs

How to cite the iThenticate report for this article:

Asamoah-Boaheng M, Grunau B, Haig S, Karim ME, Kirkham T, *et al.* iThenticate report for: 11-month SARS-CoV-2 immunogenicity decay, and associated factors, among mRNA vaccinees: Implications for Booster Vaccination. *Access Microbiology*. 2023. https://doi.org/10.1099/acmi.0.000678.v1.2

٦

Document Identifier: 2213_649989aeefabe2.58249349

Г

SciScore Report

Below you will find your SciScore report containing three tables. Your score is calculated based on adherence to scientific rigor criteria (Table 1) and identification of key biological resources (Table 2). Table 3 contains statistical tests and oligonucleotides but is not scored. If SciScore makes any mistakes, please <u>contact us</u> to help us learn and improve.

Table 1: Rigor Adherence Table

Ethics
Consent: Participants provided electronic consent upon enrolment.
Inclusion and Exclusion Criteria
Study participants:For this investigation, we included participants who provided two blood samples after receiving only two mRNA vaccines of the same type (either two doses of BNT162b2, or two doses of mRNA-1273 vaccines).
Attrition
not detected.
Sex as a biological variable
The various factors included in the model were: participant age (years, continuous variable), female sex at birth (vs. male); "racialized" (including those who self-described their ethnicity or race as South Asian, Chinese, Black, Filipina, Latin American, Arab, Southeast Asian, West Asian, Korean, or Japanese) (vs. whites)"; "BMI: 18.5 to <25kg/m2 (vs. others)", "BMI ≥ 25kg/m2 (vs others)"; "BNT162b2 vaccine (vs. mRNA-1273)"; "short vaccine dosing interval (binary variable, "short" defined as a vaccine dosing interval less than the median value); and past medical history (including covariates: hypertension, diabetes, asthma, liver diseases, and cancer).
Subject Demographics
Weight: The various factors included in the model were: participant age (years, continuous variable), female sex at birth (vs. male); "racialized" (including those who self-described their ethnicity or race as South Asian, Chinese, Black, Filipina, Latin American, Arab, Southeast Asian, West Asian, Korean, or Japanese) (vs. whites)"; "BMI: 18.5 to <25kg/m2 (vs. others)", "BMI ≥ 25kg/m2 (vs others)"; "BNT162b2 vaccine (vs. mRNA-1273)"; "short vaccine dosing interval (binary variable, "short" defined as a vaccine dosing interval less than the median value); and past medical history (including covariates: hypertension, diabetes, asthma, liver diseases, and cancer).
Randomization
not detected.
Blinding
not detected.

Power Analysis
not detected.
Replication
not required.
Data Information
Availability: Data Summary statement: Due to the confidential nature of participants blood samples used for this study, the data cannot be published publicly but would be made available upon reasonable request.

Table 2: Key Resources Table

Your Sentences	REAGENT or RESOURCE	SOURCE	IDENTIFIER
	Antibo	dies	
Serological Testing:We tested all samples with: (1) Elecsys Anti- SARS-CoV-2 (nucleocapsid)	Anti-SARS- CoV-2 (nucleocapsid)		
Ltd, Rotkreuz, Switzerland] assay20,21 to confirm eligibility;	Anti-SARS- CoV-2		
(2) the quantitative Roche Elecsys Anti-SARS-CoV-2 (S) (Roche Diagnostics International Ltd, Rotkreuz, Switzerland) assay for measuring spike total antibody concentrations; and (3) the Meso Scale Discovery (MSD) V-PLEX COVID-19 Coronavirus Panel 2 IgG assay for measuring IgG to spike and receptor-binding domain (RBD) antigens.	receptor-binding domain (RBD) antigens.		
Study outcomes:The primary outcome was total anti-spike antibody concentrations (measured with the Elecsys assay), and the secondary outcomes were IgG concentrations to spike and RBD antigens (measured with the VPLEX assay).	anti-spike		
Antibody concentrations (including: total anti-spike, anti-spike IgG and anti-RBD IgG antibody	anti-spike, anti- spike IgG		
concentrations) were presented as geometric mean (GM) with corresponding geometric standard deviations (GSD).	anti-RBD IgG		

SciScore is an <u>automated tool</u> that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. *SciScore is not a substitute for expert review*. SciScore also checks for the presence and correctness of several unique identifiers, including RRIDs (research resource identifiers) in the manuscript, detects sentences that appear to be missing RRIDs, and can even suggest RRIDs under certain circumstances. All RRID suggestions should be verified; only the author can know whether the suggestions are correct.

For a full description of scored criteria and tips for improving your score, please see <u>https://</u> www.scicrunch.com/sciscorereport-faq

Materials Design Analysis Reporting (MDAR) Checklist for Authors

The MDAR framework establishes a minimum set of requirements in transparent reporting applicable to studies in the life sciences (see Statement of Task: doi:10.31222/osf.oio/9sm4x.). The MDAR checklist is a tool for authors, editors and others seeking to adopt the MDAR framework for transparent reporting in manuscripts and other outputs. Please refer to the MDAR Elaboration Document for additional context for the MDAR framework.

Materials

Antibodies	Yes (indicate where provided: page no/section/legend)	n/a
For commercial reagents, provide supplier name, catalogue number and RRID, if available	Yes, 6 antibodies detected, 0 RRID provided : Anti-SARS-CoV-2 (nucleocapsid) : Anti-SARS-CoV-2 : receptor-binding domain (RBD) antigens. : anti-spike : anti-spike, anti-spike IgG : anti-RBD IgG Please add identifiers for all resources where possible	
Cell Materials	Yes (indicate where provided: page no/section/legend)	n/a
Cell lines: Provide species information, strain. Provide accession number in repository OR supplier name, catalog number, clone number, OR RRID	No cell lines detected Please add identifiers for all resources where possible	
Primary cultures: Provide species, strain, sex of origin, genetic modification status.	Not currently checked by SciScore	
Experimental Animals	Yes (indicate where provided: page no/section/legend)	n/a
Laboratory animals: Provide species, strain, sex, age, genetic modification status. Provide accession number in repository OR supplier name, catalog number, clone number, OR RRID	No organisms detected Please add identifiers for all resources where possible	
Animal observed in or captured from the field: Provide species, sex and age where possible	Not currently checked by SciScore	
Model organisms: Provide Accession number in repository (where relevant) OR RRID	See laboratory animals section for information.	
Plants and microbes	Yes (indicate where provided: page no/section/legend)	n/a
Plants: provide species and strain, unique accession number if available, and source (including location for collected wild specimens)	Not currently checked by SciScore	
Microbes: provide species and strain, unique accession number if available, and source	Not currently checked by SciScore	
Human research participants	Yes (indicate where provided: page no/section/legend)	n/a
Identify authority granting ethics approval (IRB or equivalent committee(s), provide reference number for approval.	Not detected.	
Provide statement confirming informed consent obtained from study participants.	Participants provided electronic consent upon enrolment.	
Report on age and sex for all study participants.	Age:Not detected.Sex:The various factors included in the model were:participant age (years, continuous variable), female sex atbirth (vs. male); "racialized" (including those who self-described their ethnicity or race as South Asian, Chinese,Black, Filipina, Latin American, Arab, Southeast Asian,West Asian, Korean, or Japanese) (vs. whites)"; "BMI: 18.5	

Human research participants	Yes (indicate where provided: page no/section/legend)	n/a
	to <25kg/m2 (vs. others)", "BMI Sex:≥Sex: 25kg/m2 (vs others)"; "BNT162b2 vaccine (vs. mRNA-1273)"; "short vaccine dosing interval (binary variable, "short" defined as a vaccine dosing interval less than the median value); and past medical history (including covariates: hypertension, diabetes, asthma, liver diseases, and cancer).	

Design

Study protocol	Yes (indicate where provided: page no/section/legend)	n/a
For clinical trials, provide the trial registration number OR cite DOI in manuscript.	Not detected.	

Laboratory protocol	Yes (indicate where provided: page no/section/legend)	n/a
Provide DOI or other citation details if detailed step- by-step protocols are available.	Not detected.	

Experimental study design (statistics details)	Yes (indicate where provided: page no/section/legend)	n/a
State whether and how the following have been done, or if they were not carried out		
Sample size determination	not detected.	
Randomization	not detected.	
Blinding	not detected.	
inclusion/exclusion criteria	Study participants:For this investigation, we included participants who provided two blood samples after receiving only two mRNA vaccines of the same type (either two doses of BNT162b2, or two doses of mRNA-1273 vaccines).	

Sample definition and in-laboratory replication	Yes (indicate where provided: page no/section/legend)	n/a
State number of times the experiment was replicated in laboratory	Not detected.	
Define whether data describe technical or biological replicates	Not detected.	

Ethics	Yes (indicate where provided: page no/section/legend)	n/a
Studies involving human participants: State details of authority granting ethics approval (IRB or equivalent committee(s), provide reference number for approval.	Not detected.	
Studies involving experimental animals: State details of authority granting ethics approval (IRB or equivalent committee(s), provide reference number for approval.	Not detected.	
Studies involving specimen and field samples: State if relevant permits obtained, provide details of authority approving study; if none were required, explain why.	Not detected.	

Dual Use Research of Concern (DURC)	Yes (indicate where provided: page no/section/legend)	n/a
If study is subject to dual use research of concern, state the authority granting approval and reference number for the regulatory approval	Not currently checked by SciScore	

Analysis

Attrition	Yes (indicate where provided: page no/section/legend)	n/a
State if sample or data point from the analysis is excluded, and whether the criteria for exclusion were determined and specified in advance.	not detected.	
Statistics	Yes (indicate where provided: page no/section/legend)	n/a

Describe statistical tests used and justify choice of tests. Not detected.

Data availability	Yes (indicate where provided: page no/section/legend)	n/a
State whether newly created datasets are available, including protocols for access or restriction on access.	Data Summary statement: Due to the confidential nature of participants blood samples used for this study, the data cannot be published publicly but would be made available upon reasonable request.	
If data are publicly available, provide accession number in repository or DOI or URL.	Not detected.	
If publicly available data are reused, provide accession number in repository or DOI or URL, where possible.	Not detected.	
Code availability	Ves (indicate where provided: page po/section/legend)	n /9

Code availability	Yes (indicate where provided: page no/section/legend)	n/a
For all newly generated code and software essential for replicating the main findings of the study:		
State whether the code or software is available.	Not detected.	
If code is publicly available, provide accession number in repository, or DOI or URL.	Not detected.	

Analysis

Adherence to community standards	Yes (indicate where provided: page no/section/legend)	n/a
MDAR framework recommends adoption of discipline-specific guidelines, established and endorsed through community initiatives. Journals have their own policy about requiring specific guidelines and recommendations to complement MDAR.		
State if relevant guidelines (eg., ICMJE, MIBBI, ARRIVE) have been followed, and whether a checklist (eg., CONSORT, PRISMA, ARRIVE) is provided with the manuscript.	Not currently checked by SciScore	

ACMI-S-23-00187.pdf

By Michael Asamoah-Boaheng

1	11-month SARS-CoV-2 immunogenicity decay, and associated factors, among mRNA
2	vaccinees: Implications for Booster Vaccination
3	
4	Michael Asamoah-Boaheng ^{1,2*} , Brian Grunau ^{1,2,3} , 29ptt Haig ³ , Mohammad Ehsanul Karim ^{2,4} ,
5 6	Vilte Barakauskas ⁷ , Ana Citlali Marquez ^{7,11} , Agatha Jassem ^{7,11} , David Goldfarb ^{7,12}
7	
8	⁵ Department of Emergency Medicine, University of British Columbia, Vancouver, British
9	Columbia, Canada.
10 11	² Centre for Health Evaluation & Outcome Sciences, University of British Columbia, Vancouver, British Columbia, Canada
12	³ British Columbia Emergency Health Services, Vancouver, British Columbia, Canada.
13	⁴ School of Population and Public Health, University of British Columbia, Vancouver, British
14	Columbia, Canada.
15	⁵ Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
16 17	⁶ Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
17	
18 19	⁷ Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
20	⁸ Canadian Blood Services Vancouver British Columbia Canada
20	⁹ Division of Diagnostia and Amplied Miarabiology Laboratory Medicine and Pathology
21	University of Alberta, Alberta, Canada.
23	¹⁰ School of Epidemiology & Public Health, University of Ottawa, Ottawa, Ontario, Canada.
24	¹¹ Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, British
25	Columbia, Canada.
26 27	¹² British Columbia Children's Hospital Research Institute, British Columbia Children's Hospital, Vancouver, British Columbia, Canada.
28	
29	*Corresponding author : Dr. Michael Asamoah-Boaheng,
30	⁵ epartment of Emergency Medicine, University of British Columbia;
31	BC Resuscitation Research Collaborative, Vancouver, British Columbia, V6Z 2K5, Canada.
32	Email: michael.boaheng@ubc.ca
	1

33	Abstract
34	Background: We examined the 11-month longitudinal antibody decay among 2-dose mRNA
35	vaccinees, and identified factors associated with faster decay.
36	Methods: The study included samples from the CORSIP longitudinal observational study of
37	paramedics in Canada. Participants were included if they had received two mRNA vaccines
38	without prior SARS-CoV-2 infection and provided two blood samples post-vaccination. The
39	outcomes of interest were quantitative SARS-CoV-2 antibody concentrations. We employed
40	spaghetti and scatter plots (with kernel-weighted local polynomial smoothing curve) to describe
41	the trend of the antibody decay over 11-months post vaccine and fit a mixed effect exponential
42	decay model to examine the loss of immunogenicity and factors associated with antibody waning
43	over time.
44	Results: This analysis included 652 blood samples from 326 adult paramedics. Total anti-spike
45	antibody levels peaked on the 21^{st} day (antibody level 9,042U/mL) after the second mRNA
46	vaccine dose. Total anti-spike antibody levels declined thereafter, with a half-life of 94 [95% CI:
47	70, 143] days, with levels plateauing at 295 days (antibody level 1021 U/mL). Older age, vaccine
48	dosing interval <35 days, and the BNT162b2 vaccine (compared to mRNA-1273 vaccine) were
49	associated with faster antibody decay.
50	Conclusion: Antibody levels declined after the initial mRNA series with a half-life of 94 days,
51	plateauing at 295 days. These findings may inform the timing of booster vaccine doses and
52	identifying individuals with faster antibody deday.
53	
54	
55	Keywords: SARS-CoV-2; Immunogenicity decay; Risk factors; antibody levels, mRNA
56	COVID-19 vaccines.
57	
58	
59	
60	
61	
	2

62 Introduction

Data from observational studies and randomized controlled trials have demonstrated the 63 effectiveness of COVID-19 vaccines against symptomatic illness, COVD-19-related 64 hospitalizations, complications, and death^{1-3,4}. However, the long-term duration of vaccine-65 induced immunity is unclear. Previous studies document waning of SARS-CoV-2 antibody 66 levels after both vaccination and infection,⁵ with anti-spike levels decreasing substantially as 67 early as three months after the second BNT162b2 dose⁶. Humoral responses have been shown to 68 be significantly decreased six months after the receipt of the second dose of BNT162b2 vaccine, 69 especially among older adults (≥ 65 years) and those with compromised immune systems^{6–11}. 70 However, data on the long-term (>6 month) immunogenicity post-SARS-CoV-2 vaccination 71 remain scarce.^{6,7,10,11}. 72 Given evidence of waning SARS-CoV-2 humoral immune responses after vaccination, booster 73 vaccinations have been implemented in many jurisdictions; however, the optimal timing for 74 boosters remains unclear. There is growing evidence that SARS-CoV-2 antibody levels provide 75 a measure of COVID-19 risk¹²⁻¹⁴ and COVID-19 severity,¹⁵⁻¹⁷ a relationship that has been 76 shown to be present even within the Omicron era¹⁸. Thus, antibody levels may inform decisions 77 78 regarding the optimal timing of a booster vaccination. Further, given that immunity has been 79 shown to differ based on individual characteristics, it is possible that the optimal booster 80 schedule may vary within different patient groups. Currently there is limited data showing the long-term durability of, and factors associated with, antibody levels post-vaccination. We sought 81 to investigate antibody waning 11 months after two mRNA vaccine doses among adult COVID-82 naïve paramedics in Canada, and factors associated with these outcomes. 83

85 Methods

86 Study setting, design, and ethics

- 87 Our study included samples of paramedics from the Occupational Risks, Seroprevalence, and
- 88 Immunity among Paramedics in Canada (CORSIP) study¹⁹. CORSIP is a longitudinal
- 89 observational study investigating the seroprevalence of SARS-CoV-2 antibodies among adult (\geq
- 90 19 years) Canadian paramedics. Participants provided blood samples and data from structured
- 91 questionnaires on vaccination and COVID-19 history, past medical history, demographic and
- 92 workplace characteristics.

93 Study participants

- 94 For this investigation, we included participants who provided two blood samples after receiving
- 95 only two mRNA vaccines of the same type (either two doses of BNT162b2, or two doses of
- 96 mRNA-1273 vaccines). We excluded participants who had evidence of prior SARS-CoV-2
- 97 infection at any time prior to the second blood collection, based on reported positive nucleic acid
 21
 98 amplification viral testing or a reactive blood sample on the Elecsys Nucleocapsid Anti-SARS-
- 99 CoV-2 [Roche, IND, USA] assay.²⁰

- 101 Serological Testing
- 102 We tested all samples with: (1) Elecsys Anti-SARS-CoV-2 (nucleocapsid) [Roche Diagnostics
- International Ltd, Rotkreuz, Switzerland] assay^{20,21} to confirm eligibility; (2) the quantitative
- 104 Roche Elecsys Anti-SARS-CoV-2 (S) (Roche Diagnostics International Ltd, Rotkreuz,
- 105 Switzerland) assay for measuring spike total antibody concentrations; and (3) the Meso Scale

- 106 Discovery (MSD) V-PLEX COVID-19 Coronavirus Panel 2 IgG assay for measuring IgG to
- 107 spike and receptor-binding domain (RBD) antigens.
- 108 Study outcomes
- 109 The primary outcome was total anti-spike antibody concentrations (measured with the Elecsys
- assay), and the secondary outcomes were IgG concentrations to spike and RBD antigens
- 111 (measured with the VPLEX assay).
- 112 Statistical analysis
- 113 We described continuous variables with mean and standard deviation (SD) for near normally
- distributed variables without any influential outliers, or median (with interquartile range [IQR])
- 115 for skewed or non-normally distributed variables. Categorical variables were described with
- counts and percentages. Antibody concentrations (including: total anti-spike, anti-spike IgG and
 anti-RBD IgG antibody concentrations) were presented as geometric mean (GM) with
- corresponding geometric standard deviations (GSD). We described the longitudinal changes in
 SARS-COV-2 antibodies 11 months after the second mRNA vaccine dose with scatter (with
- 120 Kernel-weighted local polynomial smoothing curve)^{22,23} and spaghetti plots. Using the Kernel-
- 121 weighted local polynomial smoothing approach with Epanechnikov kernel function²², we
- 122 generated the smoothing values and their corresponding smoothing grids and estimated the peak
- 123 antibody concentration based on the maximum kernel-weighted values. The smoothing grid
- 124 (days after the second vaccine) that corresponded to the maximum kernel-weighted smoothing
- value was considered as the day of the peak antibody level. We used the double exponential
- 126 decay (DED) model²⁴ to determine the time at which the antibody level stopped declining (the
- 127 "plateau level") [See supplementary material].

To further demonstrate differences in antibody levels after vaccination, we categorized samples
 into quartiles based on the number of days they were collected after the second vaccine dose, and
 plotted box-and-whisker plots to diagram antibody levels.

We modeled the persistence of antibody levels over time using a mixed effect exponential decay
(ED) model. The mean structure of the exponential decay model with random intercept and slope
is given by:

134
$$log_{10}(Ab_{i,j}) = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i}) \cdot T_{i,j} + \varepsilon_{i,j}$$

135 β_0 and β_1 are the fixed effects intercept and decay rate respectively, while b_{0i} and b_{1i} are the 136 subject-specific (random effects) intercept and decay rates respectively. $\mathcal{E}_{i,j}$ represents the 137 random error term for participant '*i*' at time (day) "*j*" which is assumed to be normally 138 distributed; $log_{10}(Ab_{i,j})$ is the mean log antibody titer at time $T_{i,j}$ post vaccination^{9,25}. To 139 determine the waning of antibody levels over time, we used the mixed effects ED model to 140 estimate the half-life (the time the peak antibody level was reduced by 50%)⁹. Thus, the half-life 141 $(t_{1/2})$ was estimated as²⁵:

142
$$t_{1/2} = \frac{\log_{10}(0.5)}{\beta_1}$$

Further, we fit a mixed effect ED model to investigate the factors associated with antibody decay
over the 11-month study observation period. The mixed effect ED model with random intercept
was used to account for the repeated measurements of antibody concentrations for each
participant at the two different time points. This model has been used in other studies that
investigated antibody waning among vaccinated individuals over time^{9,25}. The various factors

148	included in the model	were: participant age	(vears, continuous	variable), fema	ale sex at birth ((vs.
10	mendaded in the model	mere: purcleipunt age	yours, commutute	, and the first fi	ne ben ut onthi (

- 149 male); "racialized" (including those who self-described their ethnicity or race as South Asian,
- 150 Chinese, Black, Filipina, Latin American, Arab, Southeast Asian, West Asian, Korean, or
- Japanese) (vs. whites)"; "BMI: 18.5 to <25kg/m² (vs. others)", "BMI ≥ 25 kg/m² (vs others)";
- 152 "BNT162b2 vaccine (vs. mRNA-1273)"; "short vaccine dosing interval (binary variable, "short"
- 153 defined as a vaccine dosing interval less than the median value); and past medical history
- 154 (including covariates: hypertension, diabetes, asthma, liver diseases, and cancer).

155 Results

- 156 The study included 652 samples from 326 paramedics, with a mean age was 42 (SD=11) years,
- where 46% were female. The majority of the study participants (82%) were vaccinated with two
- 158 doses of BNT162b2 vaccine while the remaining 18% received two doses of mRNA-1273.
- Table 1 shows patient characteristics, intervals between vaccines and blood collection dates, and
 outcome measures. The first and second blood collection occurred at a median of 59 (IQR 29,
 94) and 156 (IQR 145, 176) days after the second vaccine dose, respectively. The GM (GSD) of
 the total anti-spike antibody concentration at the first and second blood collection was 2940 (3.5)
 U/mL and 1455 (2.4) U/mL, respectively; for anti-spike IgG was 102,051(3.1) AU/mL and
 30,956 (2.0) AU/mL, and for anti-spike RBD was 66,986 (3.8) AU/mL and 17,406 (2.3) AU/mL,
 respectively.
- Figures 1 (spaghetti plots) and 2 (scatter plots, with smooth curve), and Supplementary Figure S1 (box plots), describe the longitudinal changes in antibody concentrations during the 11 months
 after the second vaccine. The peak values for total anti-spike (9,042 U/mL), anti-spike IgG (323,980 AU/mL), and anti-RBD IgG (249,051 AU/mL) antibody concentrations were all

	46
170	recorded on the 21st day after the second vaccine dose (Figure 2 and supplementary Table S1).
171	On the 288 th day after vaccination, total anti-spike antibody levels stopped declining, plateauing
172	at 1021 U/mL (Figure 2 and supplementary Table S1) which was 11% of the peak value. Anti-
173	spike IgG and Anti-RBD IgG levels plateaued at 321 days (5.3% of the peak value) and 308 days
174	(4.8% of the peak value) days post-vaccination, respectively (see supplementary Tables S1-S4).
175	The mixed-effects ED model identified several independent factors associated with a faster 11-
176	month rate of post-vaccine anti-spike total antibody decay (Table 3), including: older age, a
177	vaccine dosing interval < 35 days, and BNT162b2 (vs. mRNA-1273) vaccine type. Results
178	examining outcomes of anti-spike and anti-RBD IgG antibody concentrations were largely
179	consistent, except: (1) shorter vaccine dosing interval which was not significantly associated
180	with anti-spike and anti-RBD IgG antibody decay over time; and, (2) BMI was not associated
181	with total anti-spike antibody decay, however was associated with anti-spike and anti-RBD IgG
182	antibody decay.
183	³⁹ The half-lives of the total antibody, anti-spike IgG, and anti-spike RBD concentrations were 94
184	(95% CI: 70-143) days, 68 (95% CI: 56-89) days, and 61 (95% CI: 49-79) days respectively
185	(Table 2).
186	
187	
188	Discussion
189	

190 We investigated long-term immunogenicity from serially-tested middle-aged double-mRNA

vaccinees over 11 months after receiving the second vaccine. Antibody concentrations reached

maximum levels on day 21 after the second dose, subsequently declined with a half-life of 94

8

L

193	days, and then plateaued at a level of 1021U/mL after approximately 10 months. We found older
194	age, a vaccine dosing interval <35 days, and the BNT162b2 (vs. mRNA-1273) vaccine to be
195	associated with a faster rate of post-vaccination total anti-spike antibody decay. These data may
196	assist decision makers with the timing of booster vaccination doses. Modification of vaccination
197	schedules may be warranted for those shown to have faster antibody decay, including older
198	individuals, those with a shorter vaccine dosing interval, and those who received the BNT162b2
199	vaccine. It may also be warranted to prioritize mRNA-1273 dosing for groups that are at greater
200	risk for rapid antibody decay.
201	Previous studies have investigated post-vaccine antibody decay up to six months after the second
202	vaccine dose, and as well as the factors associated with antibody decline. A longitudinal study
203	involving vaccinated healthcare personnel recorded a rapid decline of antibody levels one month
204	after receiving their second vaccine dose ²⁶ . In a study that investigated the safety and
205	immunogenicity of two mRNA-based COVID-19 vaccines, the immune response after receiving
206	two doses of BNT162b2 was lower in the older individuals (65-85 years) than the younger age
207	group (18 to 55 years). Perez-Alos et al ⁸ modelled the waning of immunity after SARS-CoV-2
208	vaccination for up to 230 days after the first dose and found decay of antibody levels over time.
209	Additionally, their study found a decrease in antibody levels among older individuals (more than
210	60 years) independent of previous infection. These findings are consistent with our study which
211	demonstrates faster antibody decay among older individuals after receiving two mRNA vaccine
212	doses. This data, in combination with previous evidence shows that older individuals are more
213	likely to have severe COVID-19 ^{27,28} , and thus, supports consideration of earlier booster
214	vaccination strategies (which have been incorporated into some clinical recommendations ^{29–31}).

Our results showed that patients vaccinated with BNT162b2, vs. mRNA-1273, demonstrated a 215 faster **post-vaccine** antibody decay, which may have implications for booster dose timing. 216 Previous studies have shown a similar differences between these vaccines, including mRNA-217 1273 demonstrating higher humoral immunogenicity,³² and a lower risk of breakthrough 218 infections and COVID-19 related hospitalizations³³. We also found extended mRNA vaccine 219 220 dosing intervals ' \geq 35 days' to be associated with a slower rate of antibody decay, which is 221 congruent with previous investigations demonstrating improved immunogenicity and vaccine effectiveness with longer, compared to standard, vaccine dosing intervals^{34–36,37}. 222 223 The optimal timing of booster vaccination remains unclear, with some advocating for annual COVID-19 vaccines³⁸. Given the existing evidence demonstrating that SARS-CoV-2 antibody 224 levels are associated with COVID-19 risk¹²⁻¹⁴ and disease COVID-19 severity,¹⁵⁻¹⁷ antibody 225 models may play a role in informing booster vaccination strategies. Our 11-month data indicates 226 that antibody levels peak within 1 month, and then decline up to approximately 10 months. It is 227 228 therefore unclear if an annual booster campaign will provide adequate protection and this will at 229 least partially depend on whether SARS-CoV-2 will become primarily associated with seasonal infections. 230

231 Limitations

This observation study has several limitations. There may be additional confounding variables
affecting immunogenicity decay that we did not account for. Our study participants included
middle-aged paramedics in Canada; results may differ in other patient populations. Antibody
levels have been shown to be associated with COVID-19 clinical outcomes, however, remain
surrogate markers of immunity, and thus actual clinical outcomes may differ.

237	Conclusion
238	36 SARS-CoV-2 immunogenicity peaked within 21 days after the second mRNA vaccine, and
220	36 subsequently declined, plateguing at approximately 10 months after the second dose. Older age
239	subsequently declined, plateaunig at approximately 10 months after the second dose. Older age,
240	shorter vaccine dosing interval (< 35 days), and the BNT162b2 vaccine were associated with a
241	faster rate of post-vaccination antibody decay. These findings may inform booster frequency,
242	including patient-specific schedules.
243	
244	Conflict of interest
245	1 The authors declare no conflict of interest.
246	
2.10	
247	Funding:
248	This study was supported by funding from Government of Canada, through the COVID-19
249	Immunity Task Force. M.A-B is supported by the Michael Smith Health Research BC/Center for
250	Health Evaluation & Outcome Sciences Research Trainee award. M.E.K. is supported in part by
251	a Scholar Award from the Michael Smith Foundation for Health Research, partnered with Centre
15.2	for Hadith Evoluation and Outcome Sciences, P.C. is supported by the Michael Smith
252	for Health Evaluation and Outcome Sciences. B.G. is supported by the Michael Smith
253	Foundation for Health Research.
254	
254	17 17
255	Conceptualization: M.A-B, B.G, D.G, M.E.K, T.K, P.M.L, S.S, S.J.D, S.F.O, V.B, A.C.M, A.J,
256	D.G. Data curation: M.A-B, B.G, D.G, T.K. Formal analysis: M.A-B, B.G, D.G, M.E.K, T.K,
257	P.M.L, S.S, S.J.D, S.F.O, V.B, A.C.M, A.J, D.G. Funding acquisition: B.G, D.G, T.K, M.A-B.
258	⁵³ Investigation: M.A-B, B.G, D.G, M.E.K, T.K, P.M.L, S.S, S.J.D, S.F.O, V.B, A.C.M, A.J, D.G.
259	Methodology: M.A-B, B.G, D.G, T.K, M.E.K. Project administration: B.G, D.G, T.K.
	11

260	Resources: B.G, D.G, T.K. Software: M.A-B, B.G, D.G, M.E.K, T.K, P.M.L, S.S, S.J.D, S.F.O,
261	⁶¹ V.B, A.C.M, A.J, D.G. <i>Validation</i> : M.A-B, B.G, D.G, M.E.K, T.K, P.M.L, S.S, S.J.D, S.F.O,
262	V.B, A.C.M, A.J, D.G. Visualization: M.A-B, B.G, D.G. Writing – original draft: M.A-B, B.G,
263	D.G. <i>Writing – review and editing</i> : all authors.
264	
265	Ethical approval
	21
266	The study was approved by the University of British Columbia (H20-03620), and University of
267	Toronto (40435) research ethics boards. Participants provided electronic consent upon
268	enrolment.
269	
270	
271	nFSIL
272	
273	
274	
275	
270	
278	
279	
280	
281	
282	
283	
284	
	12

285 Reference

286 1. 287 288	Pritchard E, Matthews PC, Stoesser N, et al. Impact of vaccination on the SARS-CoV-2 infections in the United Kingdom. <i>Nat Med</i> . 2021;27(8):1370-1378. doi:10.1038/s41591-021-01410-w
 289 290 291 292 293 	Haas EJ, Angulo FJ, McLaughlin JM, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. <i>Lancet</i> . 2021;397(10287):1819-1829. doi:10.1016/S0140-6736(21)00947-8
294 3.295296	Zollner A, Watschinger C, Rössler A, et al. B and T cell response to SARS-CoV-2 vaccination in health care professionals with and without previous COVID-19. <i>EBioMedicine</i> . 2021;70:1-10. doi:10.1016/j.ebiom.2021.103539
297 4. 298 299	Lin D-Y, Gu Y, Wheeler B, et al. Effectiveness of Covid-19 Vaccines over a 9-Month Period in North Carolina. <i>N Engl J Med</i> . 2022;386(10):933-941. doi:10.1056/nejmoa2117128
300 5.301302	Brisotto G, Muraro E, Montico M, et al. IgG antibodies against SARS-CoV-2 decay but persist 4 months after vaccination in a cohort of healthcare workers. <i>Clin Chim Acta</i> . 2021;523:476-482. doi:https://doi.org/10.1016/j.cca.2021.10.035
303304305	Naaber P, Tserel L, Kangro K, et al. Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study. <i>Lancet Reg Heal - Eur</i> . 2021;10:1-9. doi:10.1016/j.lanepe.2021.100208
306 7. 307 308	Herishanu Y, Avivi I, Levi S, et al. Six-month antibody persistence after BNT162b2 mRNA COVID-19 vaccination in patients with chronic lymphocytic leukemia. <i>Blood Adv</i> . 2022;6(1):148-151. doi:10.1182/bloodadvances.2021005998
309 8. 310 311	Pérez-Alós L, Armenteros J, Madsen J, Hansen C, Jarlhelt I, Hamm S. Modeling of waning immunity after SARS-CoV-2 vaccination and influencing factors. <i>Nat Commun</i> . 2022;13:1-11. doi:https://doi.org/10.1038/s41467-022-29225-4
312 9.313314	Hatzakis A, Karabinis A, Roussos S, et al. Modelling SARS-CoV-2 Binding Antibody Waning 8 Months after BNT162b2 Vaccination. <i>Vaccines</i> . 2022;10(2):1-14. doi:10.3390/vaccines10020285
315 10.316317	Bayart JL, Douxfils J, Gillot C, et al. Waning of igg, total and neutralizing antibodies 6 months post-vaccination with bnt162b2 in healthcare workers. <i>Vaccines</i> . 2021;9(10):1-12. doi:10.3390/vaccines9101092
318 11. 319 320	Levin EG, Lustig Y, Cohen C, et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. <i>N Engl J Med</i> . 2021;385(24):e84(1)-e84(11). doi:10.1056/nejmoa2114583
321 12. 322 323	houry DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. <i>Nat Med</i> . 2021;27(7):1205-1211. doi:10.1038/s41591-021-01377-8

374	13	Cheetham NI Kibble M Wong A et al. Antibody levels following vaccination against
325	10.	SARS-CoV-2: associations with post-vaccination infection and risk factors. <i>medRxiv</i> .
326		Bublished online 2022:1-41.
327		http://medrxiv.org/content/early/2022/05/22/2022.05.19.22275214.abstract
220	14	7 Percent M. Conner T. Lostin V. et al. Consid 10 Percentational Infractionalia Manifester
328	14.	Bergwerk M, Gonen I, Lustig Y, et al. Covid-19 Breakthrough Infections in Vaccinated
329		Health Care workers. <i>N Engl J Med</i> . 2021;385(16):1474-1484.
330		18 18 18 18 18 18 18 18 18 18 18 18 18 1
331	15.	Takita M, Yoshida T, Tsuchida T, et al. Low SARS-CoV-2 antibody titers may be
332		associated with poor clinical outcomes for patients with severe COVID-19. Sci Rep.
333		2022;12(1):1-11. doi:10.1038/s41598-022-12834-w
224	16	3 Learnes V. Depolly, S. Vegrig M. et al. A lengitudinal study of SABS, CoV 2 infected
334	10.	netions v, Denony S, vogng M, et al. A longhudinal study of SARS-Cov-2-infected
335		patients reveals a high correlation between neutralizing antibodies and COVID-19
330		14
337	17.	Garcia-Beltran WF, Lam EC, Astudillo MG, et al. COVID-19-neutralizing antibodies
338		predict disease severity and survival. Cell. 2021;184(2):476-488.
339		doi:10.1016/j.cell.2020.12.015
340	18	Asamoah-Boaheng M. Goldfarh DM. Mohammad FK, et al. The relationship between
341	10.	anti-spike SARS-CoV-2 antibody levels and risk of breakthrough COVID-19 among fully
342		vaccinated adults. <i>J Infect Dis</i> . Published online 2022.
343		doi:https://doi.org/10.1093/infdis/jiac403
	10	
344	19.	Grunau B, O'Brien SF, Kirkham TL, et al. A Prospective Observational Cohort
345		Comparison of SARS-Cov-2 Seroprevalence Between Paramedics and Matched Blood
340		doi:10.1016/i appemeramed 2022.03.000
547		15
348	20.	Ainsworth M, Andersson M, Auckland K, et al. Performance characteristics of five
349		immunoassays for SARS-CoV-2: a head-to-head benchmark comparison. Lancet Infect
350	-	Dis. 2020;20(12):1390-1400. doi:10.1016/S1473-3099(20)30634-4
351	21.	Grunau B, Tom J, Asamoah-Boaheng M, et al. Sensitivity of the Elecsys Nucleocapsid
352		Assay for the Detection of Preceding SARS-CoV-2 Infections. Open Forum Infect Dis.
353		2022;9(8):1-4. doi:10.1093/ofid/ofac349
254	22	6 Gaiawigz Skratna A. Kar S. Biotrowska M. Laszozumski I. The karnel weighted local
354	22.	polynomial regression (KwI PP) approach: an efficient novel tool for development of
255		OSAP/OSAAP toxicity extrapolation models. <i>I Chaminform</i> 2021:13(1):1 20
350		doi:10.1186/s13321-021-00484-5
557		35
358	23.	Müller HG. Weighted local regression and kernel methods for nonparametric curve fitting.
359		J Am Stat Assoc. 1987;82(397):231-238. doi:10.1080/01621459.1987.10478425
360	24.	GraphPad. Equation: Two phase decay. Published 2022. Accessed September 20, 2022.
361		nttps://www.graphpad.com/guides/prism/latest/curve-
362		fitting/reg_exponential_decay_2phase.htm
363	25	Doria-Rose N. Suthar M. Makowski M. et al. Antibody Persistence through 6 Months
505	23.	Dona Rose 14, buthar 141, maxowski 141, et al. Antribody i crisistence unough o montuis
		14

364 365		after the Second Dose of mRNA-1273 Vaccine for Covid-19. <i>N Engl J Med</i> . 2021;384(23):2257-2259. doi:10.1056/nejmc2023298
366 367 368	26.	Khoury J, Najjar-Debbiny R, Hanna A, et al. COVID-19 vaccine – Long term immune decline and breakthrough infections. <i>Vaccine</i> . 2021;39(48):6984-6989.
369 370 371	27.	Singhal S, Kumar P, Singh S, Saha S, Dey A. Clinical features and outcomes of COVID- 19 in 57er adults: a systematic review and meta-analysis. <i>BMC Geriatr</i> . 2021;21(321):1- 9. doi:https://doi.org/10.1186/s12877-021-02261-3
372 373 374	28.	Centers for Disease Control and Prevention (CDC). COVID-19 Risks and Vaccine formation for Older Adults. Published 2022. Accessed September 26, 2022. https://www.cdc.gov/aging/covid19/covid19-older-adults.html
375 376 377 378	29.	Australian Government-Department of Health and aged care. Clinical recommendations for COVID-19 vaccines. Published 2022. Accessed September 21, 2022. https://www.health.gov.au/initiatives-and-programs/covid-19-vaccines/advice-for- providers/clinical-guidance/clinical-recommendations
379 380 381 382	30.	Centers for Disease Control and Prevention. <i>Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Approved or Authorized in the United States.</i> ; 2022. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html
383 384 385	31.	Ministry of Health Ontario. <i>COVID-19 Vaccine Booster Recommendations</i> .; 2022. https://www.health.gov.on.ca/en/pro/programs/publichealth/coronavirus/docs/vaccine/CO VID-19_vaccine_third_dose_recommendations.pdf
386 387 388	32.	Steensels D, Pierlet N, Penders J, Mesotten D, Heylen L. Comparison of SARS-CoV-2 Antibody Response following Vaccination with BNT162b2 and mRNA-1273. <i>JAMA - J</i> <i>Am Med Assoc</i> . 2021;326(15):1533-1535. doi:10.1001/jama.2021.15125
389 390 391 392	33.	Wang L, Davis PB, Kaelber DC, Volkow ND, Xu R. Comparison of mRNA-1273 and BNT162b2 Vaccines on Breakthrough SARS-CoV-230 fections, Hospitalizations, and Death during the Delta-Predominant Period. <i>JAMA</i> - <i>J Am Med Assoc</i> . 2022;327(7):678- 680. doi:10.1001/jama.2022.0210
393 394 395	34.	Payne RP, Longet S, Austin JA, et al. Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine. <i>Cell</i> . 2021;184(23):5699-5714.e11. doi:10.1016/j.cell.2021.10.011
396 397 398	35.	Grunau B, Goldfarb DM, Asamoah-Boaheng M, et al. Im 30 mogenicity of Extended mRNA SARS-CoV-2 Vaccine Dosing Intervals. <i>JAMA</i> - <i>J Am Med Assoc</i> . 2022;327(3):279-281. doi:10.1001/jama.2021.21921
399 400 401 402	36.	Grunau B, Asamoah-Boaheng M, Lavoie PM, et al. A Higher Antibody Response Is Generated With a 6- to 7-Week (vs Standard) Severe Acute Respiratory Syndrome Cot70 avirus 2 (SARS-CoV-2) Vaccine Dosing Interval. <i>Clin Infect Dis</i> . 2021;(Xx Xx):28- 31. doi:10.1093/cid/ciab938
403	37.	Skowronski DM, Febriani Y, Ouakki M, et al. Two-dose SARS-CoV-2 vaccine
		15

404 effectiveness with mixed schedules and extended dosing intervals: test-negative design
 405 studies from British Columbia and Quebec, Canada. *Clin Infect Dis*. Published online
 406 2022. doi:10.1093/cid/ciac290

407 38. Rubin R. COVID-19 Vaccine Makers Plan for Annual Boosters, but It's Not Clear They'll
408 Be Needed. *Jama*. 2021;326(22):2247-2249. doi:10.1001/jama.2021.21291

FIGURE LEGENDS

Figure 1: Spaghetti plots of longitudinal changes in antibody concentrations 11 months after 2 mRNA

vaccine doses

Figure 2: Scatter plots (*with kernel-weighted local polynomial smoothing curve*) of longitudinal changes in antibody concentrations 11 months after 2 mRNA vaccine dose.

*Vertical lines indicate the time the peak antibody level was recorded, and the time at which the antibody levels plateaued; **horizontal lines indicate the peak antibody level and the value the antibody levels plateaued respectively

Table 1: Participants characteristics

Variables	N (%) or Mean (SD) or Median (IOP)
Rasolino characteristics	$\frac{1}{N - 326 (at baseline)}$
Age years mean (SD)	42 (11)
Female Sex (at hirth) n (%)	151 (46)
Racialized	25(77)
Body Mass Index (BMI), mean (SD)	27(5.0)
Obesity (> 30 K g/m ²) n (%)	88 (27)
Tobacco use $n (\%)$	13(40)
Medical History, n (%)	
Hypertension	30 (9.2)
Diabetes	5.0 (1.5)
Asthma	55 (17)
Chronic Lung Disease	3.0 (0.9)
Heart diseases	1.0 (0.3)
Kidney diseases	1.0 (0.3)
Liver disease	5.0 (1.5)
Cancer	7.0 (2.1)
Vaccine type, n (%)	
Pfizer (BNT162b2)	268 (82)
Moderna (mRNA-1273)	60 (18)
Vaccine doses, n (%)	
1 st & 2 nd doses (BNT162b2)	266 (82)
1 st & 2 nd doses (mRNA-1273)	60 (18)
Vaccine dosing Interval (days), Median (IQR)	35 (28,42)
Time related variables	
BC 1 date, median (IQR)	2021/04/16 (2021/03/11, 2021/06/02)
BC 2 date, median (IQR)	2021/07/17 (2021/07/09, 2021/08/25)
BC1-to-BC2 interval (days), Median (IQR)	100 (76, 132)
V2-to-BC1 interval (days), Median (IQR)	59 (29,94)
V2-to-BC2 interval (days), Median (IQR)	156 (145, 176)
Outcome variables (at follow-up)	
Quantitative Antibody Concentrations, GM (GSD)	
Blood Collection 1	
Anti-Spike total antibody concentration	2940 (3.5)
Anti-Spike IgG concentration	102051(3.1)
Anti-RBD IgG concentration	66986 (3.8)
Blood Collection 2	
Anti-Spike total antibody concentration	1455 (2.4)
Anti-Spike IgG concentration	30956 (2)
Anti-RBD IgG concentration	17406 (2.3)

SD: Standard deviation; gMean: geometric mean; gSD: geometric standard deviation; IQR: Interquartile range; BC1, first blood collection date; BC2, second blood collection date; V_2 : Second vaccine dose date; Vaccine dosing interval, the number of days between V1 and V2; *Racialized*: means other non-white races including Asian ethnic groups, blacks, and others.

Table 2: Estimated half-life

Models	Random Intercept (95% CI)	Adjusted decay rates, β (95% CI) (Days after vaccine 2)	Half-life (95% CI)
Model 1	2.54e-14 (0.00)	-0.0032 (-0.0043, -0.0021)	94 (70, 143)
Model 2	0.17 (0.15, 0.20)	-0.0044 (-0.0054, 0.0034)	68 (56, 89)
Model 3	0.25 (0.21, 0.29)	-0.0049 (-0.0062, -0.0038)	61 (49, 79)

All models adjusted for age, vaccine type (BNT162b2 vs mRNA-1273), Sex at birth (Female vs Male), race (Racialized vs white), tobacco use, vaccine dosing interval, BMI:18.5-25Kg/m²; "BMI: <18.5 Kg/m²"; underweight, and medical history (hypertension, diabetes, asthma, and Cancer)

Outcome variable for model 1 is Total Anti-spike Antibody Concentration;

Outcome variable for model 2 is Anti-Spike IgG Antibody Concentration;

Outcome variable for model 3 is Anti-RBD IgG Antibody Concentration

Variables	Model 1:	Model 2:	Model 3:
	Total Anti-Spike Antibody B (95% CI)	Anti-Spike IgG B (95% CI)	Anti-RBD IgG B (95% CI)
Fixed effects			
Days after the second dose	-0.0032 (-0.0043, -0.0021)*	-0.0044 (-0.0054, 0.0034)*	-0.0049 (-0.0061, -0.0038)*
Female sex (vrs Male sex)	-0.0046 (-0.11, 0.11)	-0.033 (-0.13, 0.064)	0.0024 (-0.12, 0.12)
Current age (years)	-0.0060 (-0.011, -0.00058)*	-0.0079 (-0.013, -0.0031)*	-0.0070 (-0.013, -0.0012)*
Racialized (vrs white)	-0.0097 (-0.18, 0.16)	0.085 (-0.057, 0.23)	0.073 (-0.099, 0.24)
(BMI: 18.5 to $<25 \text{ kg/m}^2$) vs (others)	-0.20 (-0.49, 0.093)	0.21 (0.0054, 0.41)*	0.23 (-0.015, 0.48)
$(BMI \ge 25 kg/m^2)$ vs Others	-0.0073 (-0.29, 0.28)	0.37 (0.15, 0.58)*	$0.38 (0.13, 0.64)^{*}$
Tobacco use	-0.16 (-0.42, 0.11)	-0.12 (-0.32, 0.085)	-0.12 (-0.37, 0.12)
Vaccine type (BNT162b2 vrs mRNA-1273)	-0.30 (-0.44, -0.17)*	-0.15 (-0.27, -0.031)*	-0.21 (-0.36, -0.066)*
Shorter Dose 1-to-Dose 2 interval (<35 days)	-0.29 (-0.40, -0.18)*	0.022 (-0.076, 0.12)	-0.075 (-0.19, 0.044)
Medical History			
Hypertension	-0.18 (-0.38, 0.0088)	-0.0062 (-0.16, 0.15)	-0.038 (-0.22, 0.15)
Diabetes	-0.047 (-0.47, 0.38)	-0.078 (-0.46, 0.30)	-0.066(-0.52, 0.39)
Asthma	0.077 (-0.061, 0.21)	0.10 (-0.019, 0.23)	0.13 (-0.021., 0.27)
Liver disease	-0.082(-0.51, 0.34)	0.013 (-0.36, 0.39)	-0.00088 (-0.46, 0.45)
Cancer	-0.14 (-0.50, 0.22)	0.033 (-0.28, 0.35)	-0.012 (-0.40, 0.37)
Random component			
Intercept/constant (95% CI)	2.54e-14 (0)	$0.17\ (0.15, 0.20)$	0.25 (0.21, 0.29)

to 3 decimal places, se: standard error; BMI: Body Mass Index (Kg/m²).

* = P<0.05

SUPPLEMENTARY MATERIALS

Supplementary Methods

The Double exponential decay (DED) model is expressed mathematically as:

 $Ab_{levels} = Plateau + SpanFast * exp(-KFast * T) + SpanSlow * exp(-KSlow * T)$

Where, $SpanFast = (Y_0 - plateau) * PercentFast * 0.01$

$SpanSlow = (Y_0 - Plateau) * (100 - PercentFast) * 0.01$

 Y_{θ} is antibody levels (**Ab**_{*levels*)} when the time "**T**" is zero. The *Plateau* is the antibody level at the infinite times; *KF ast* and *KSlow* are the two rate constants expressed as the inverse of the time "**T**" in the x-axis; *TauFast* and *TauSlow* are the two-time constants and they are estimated as the inverse of the rate constants (i.e. 1/KFast and 1/Kslow);

Half-life (fast) and *Half-life (slow)* are the time units of the Time "**T**" and are computed as $(\ln 2/K)$; and *PercentFast* is the fraction of the **span** (defined as the distance between Y_{θ} and

Plateau point)24.

Aint-Spike Antibody concentration value value value Aint-Spike Antibody concentration 9.042 21 1021 28 Spike IgG Concentration 323.380 21 17909 30 P: the day the peak antibody levels were recorded: Day (L): the day/time the lowest antibody level was recorded. Lowest IgG defined as the value equal to when the antibody levels were the value equal to when the antibody level was recorded. Lowest IgG	xalue value value Spike Antibody concentration 9.042 21 1021 1gG Concentration $323,980$ 21 11909 led the peak antibody levels were recorded; Day (L): the day/time the looed as the value equal to when the antibody levels declined to less than 5%	288 28 321 308 west antibody level was recorded. Lowest IgG of the peak antibody value.
I Ami-Spike Antibody concentration 9,042 21 1021 288 E-Spike IgG Concentration 323,980 21 17287 321 -FBD IgG Concentration 249,051 21 17090 308 (P): the day the peak antibody levels were recorded, Day (L): the day(thme the lowest antibody level was recorded. Lowest lgG chained as the value equal to when the antibody levels were recorded. Day (L): the day the peak antibody level was recorded. Lowest lgG c befined as the value equal to when the antibody levels beet declined to less than 5% of the peak antibody value. page the peak antibody value.	Spike Antibody concentration9,042211021 $r lgG Concentration323,9802111909lgG Concentration249,0512111909ne day the peak antibody levels were recorded; Day(L): the day/time the looed as the value equal to when the antibody levels declined to less than 5%ne day the peak antibody level to a sthe value equal to when the antibody level to less than 5%$	288 321 308 west antibody level was recorded. Lowest IgG of the peak antibody value.
i-Spike IgG Concentration 323,980 21 17287 31 i-RBD IgG Concentration 249,051 21 11909 308 (P): the day the peak antibody levels were recorded: Day (L): the day/fime the lowest antibody levels was recorded. Lowest IgC ceffined as the value equal to when the antibody levels declined to less than 5% of the peak antibody value.	IgG Concentration 323,980 21 17287 IgG Concentration 249,051 21 11909 ne day the peak antibody levels were recorded; $Day (L)$: the day/time the loned as the value equal to when the antibody levels declined to less than 5%	321 308 west antibody level was recorded. Lowest IgC of the peak antibody value.
It: RBD lgG Concentration 249,051 21 1909 308 (P): the day the peak antibody levels were recorded; Day (L): the day/time the lowest antibody level was recorded. Lowest lgC e defined as the value equal to when the antibody levels declined to less than 5% of the peak antibody value.	IgG Concentration $249,051$ 21 11909 ne day the peak antibody levels were recorded; $Day (L)$: the day/time the load as the value equal to when the antibody levels declined to less than 5%	west antibody level was recorded. Lowest IgC of the peak antibody value.
(<i>P</i>): the day the peak antibody levels were recorded: <i>Day</i> (<i>L</i>): the day/time the lowest antibody level was recorded. Lowest lgC edefined as the value equal to when the antibody levels declined to less than 5% of the peak antibody value.	ie day the peak antibody levels were recorded; <i>Day (L)</i> : the day/time the lo ned as the value equal to when the antibody levels declined to less than 5%	west antibody level was recorded. Lowest IgC of the peak antibody value.

Table S2: Table showing results from the DED for Total antibody concentration (U/mL)

Two phase decay	
Best-fit values	
Y0	9741
Plateau	1021
PercentFast	77.73
KFast	0.01835
KSlow	0.007189
Half Life (Slow)	96.42
Half Life (Fast)	37.78
Tau (slow)	139.1
Tau (fast)	54.51
Rate constant ratio	2.552
Goodness of Fit	
Robust Sum of Squares	32.63
RSDR	320.0
Constraints	
PercentFast	0 < PercentFast < 100
KFast	KFast > 1*KSlow
KSlow	KSlow > 0

Table S3: Table showing results from the DED model for anti-spike IgG (AU/mL)

Two phase decay	Hit constraint
Best-fit values	SP -
Y0	311950
Plateau	17287
PercentFast	~ 25.43
KFast	~ 0.01488
KSlow	0.01488
Half Life (Slow)	46.58
Half Life (Fast)	~ 46.58
Tau (slow)	67.21
Tau (fast)	~ 67.21
Rate constant ratio	~ 1.000
Goodness of Fit	
Robust Sum of Squares	40.60
RSDR	6108
Constraints	
PercentFast	0 < PercentFast < 100
KFast	KFast > 1*KSlow
KSlow	KSlow > 0

1 abic 54, 1 abic showing results from the DED model for anti-KDD igo (110/mL)
--

ENT

Two phase decay	
Best-fit values	
Y0	244272
Plateau	11909
PercentFast	86.06
KFast	0.01716
KSlow	0.01716
Half Life (Slow)	40.40
Half Life (Fast)	40.40
Tau (slow)	58.29
Tau (fast)	58.29
Rate constant ratio	1.000
Goodness of Fit	
Robust Sum of Squares	37.81
RSDR	5875
Constraints	
PercentFast	0 < PercentFast < 100
KFast	KFast > 1*KSlow
KSlow	KSlow > 0
AD	

M

Figure 2 Click here to access/download Figure (only used for published Version of Record) Figure 2.tif

ACMI-S-23-00187.pdf

ORIGINALITY REPORT

9	www.biorxiv.org	56 words -1^{9}	%
10	files.covid19treatmentguidelines.nih.gov	47 words — 1 9	%
11	www.thelancet.com	47 words — 1 9	%
12	Mehreteab Aregay, Ziv Shkedy, Geert Molenberghs, Marie-Pierre David, Fabián Tibaldi. "Model-Based Estimates of Long-Term Persistence of Induced HPV A Flexible Subject-Specific Approach", Journal of Biopharmaceutical Statistics, 2013 Crossref	45 words — 1 9 Antibodies:	%
13	Tiziana Grassi, Giambattista Lobreglio, Alessandra Panico, Chiara Rosato et al. "Kinetics of Humoral Immunity against SARS-CoV-2 in Healthcare Workers Third Dose of BNT162b2 mRNA Vaccine", Vaccines, 2 Crossref	44 words — 19 after the 022	%
14	jamanetwork.com Internet	40 words — 1 9	%
15	meridian.allenpress.com	39 words — 1 9	%
16	www.cidrap.umn.edu	39 words — 1 9	%
17	Melissa A. Borgen, Dandan Wang, Brock Grill. "RPM- regulates axon termination by affecting growth cone collapse and microtubule stability", Development, 20 Crossref	38 words — 1 9	%

18	Sachie Nakagama, Yu Nakagama, Yuko Komase, Masaharu Kudo et al. "Age-adjusted impact of prior COVID-19 on SARS-CoV-2 mRNA vaccine response", F Immunology, 2023 Crossref	38 words — rontiers in	1%
19	healthmanagement.org	38 words —	1%
20	wowlic.sookmyung.ac.kr	35 words —	1%
21	Brian Grunau, Liam Golding, Martin A. Prusinkiewicz, Michael Asamoah-Boaheng et al. "Comparative 6- Month Wild-Type and Delta-Variant Antibody Levels Surrogate Neutralization for Adults Vaccinated with B versus mRNA-1273", Microbiology Spectrum, 2022 Crossref	32 words — and BNT162b2	1%
22	Vicky Margarita Montaño Mendoza, Yorjagis Andres Mendez Cortina, Ana Lucía Rodríguez-Perea, Geysson Javier Fernandez et al. "Biological sex and a differences shape the antiviral response to SARS-Cov infection", Heliyon, 2023 Crossref	32 words — ge-related /-2	1%
23	view-hub.org Internet	32 words —	1%
24	Ohad Benjamini, Rotem Gershon, Erez Bar - Haim, Yaniv Lustig et al. "Cellular and humoral response to the fourth BNT162b2 mRNA COVID - 19 vaccine dose patients with CLL", European Journal of Haematology Crossref	31 words — e in y, 2022	1%
			. 0/

26	pubmed.ncbi.nlm.nih.gov Internet	26 words —	1%
27	mdpi-res.com Internet	25 words —	1%
28	Miguela A. Caniza, Maysam R. Homsi, Jessica Bate, Riyadi Adrizain et al. "Answers to common questions about COVID - 19 vaccines in children v Pediatric Blood & Cancer, 2022 Crossref	24 words — < ' with cancer'',	1%
29	faculty.uobasrah.edu.iq	23 words — < '	1%
30	publinestorage.blob.core.windows.net	22 words — < '	1%
31	bcresurect.med.ubc.ca	20 words — < 4	1%
32	www.iata.org	20 words — < '	1%
33	Yared Merid, Wondwosen Tekleselasie, Emnet Tesfaye, Anteneh Gadisa et al. "SARS-CoV-2 Infection-and mRNA Vaccine-induced Humoral Im among Schoolchildren in Hawassa, Ethiopia", Fron Immunology, 2023 Crossref	19 words — < 1 munity ntiers in	1%
34	aura.abdn.ac.uk Internet	19 words — < '	1%
35	coek.info Internet	19 words — < '	1%

36	Dorota Kamińska, Dominika Dęborska- Materkowska, Katarzyna Kościelska-Kasprzak, Oktawia Mazanowska et al. "Immunity after COV and Vaccination: Similarities and Differences", Va ^{Crossref}	18 words — < D-19 Recovery ccines, 2022	1%
37	www.malaysiakini.com	17 words — <	1%
38	www.wjgnet.com	17 words — <	1%
39	Qiu-Yan Xu, Jian-Hang Xue, Yao Xiao, Zhi-Juan Jia, Meng-Juan Wu, Yan-Yun Liu, Wei-Li Li, Xian-Ming Liang, Tian-Ci Yang. "Response and Duration of S SARS-CoV-2 Antibodies After Inactivated Vaccinat Days", Frontiers in Immunology, 2021 Crossref	15 words — < erum Anti- ion Within 160	1%
40	www.toronto.com	15 words — <	1%
41	Marc-Emmanuel Dumas, Alice R. Rothwell, Lesley Hoyles, Thomas Aranias et al. "Microbial-Host Co metabolites Are Prodromal Markers Predicting Pl Heterogeneity in Behavior, Obesity, and Impaired Tolerance", Cell Reports, 2017	13 words — < nenotypic I Glucose	1%
42	Rockie U Kei Kuok, Tay T.R. Koo, Christine Lim. "Interaction effects of air services on tourism demand", Annals of Tourism Research, 2023 ^{Crossref}	12 words — <	1%
43	ashpublications.org	11 words — <	1%

44	journals.plos.org	11 words — <	1%
45	libguides.anzca.edu.au	11 words — <	1%
46	Alice Huang, Caroline Cicin-Sain, Chloe Pasin, Selina Epp et al. "Antibody Response to SARS- CoV-2 Vaccination in Patients following Allogeneic Hematopoietic Cell Transplantation", Transplanta Cellular Therapy, 2022 Crossref	10 words — <	1%
47	Dania M. Abu-Alhaija, Paidamoyo Matibiri, Kyle Brittingham, Victoria Wulsin, Kermit G. Davis, Thomas Huston, Gordon Gillespie. "The Factors A the Development of COVID-19 Symptoms among a U.S. Healthcare Institution", International Journ Environmental Research and Public Health, 2023 Crossref	10 words — <	1%
48	Kin Israel Notarte, Israel Guerrero - Arguero, Jacqueline Veronica Velasco, Abbygail Therese Ver et al. "Characterization of the significant decl immune response six months post - SARS - CoV vaccination: A systematic review", Journal of Med 2022 Crossref	10 words — < ine in humoral - 2 mRNA lical Virology,	1%
49	hypothes.is Internet	10 words — <	1%
50	Alessandra Ruggiero, Chiara Piubelli, Lucia Calciano, Simone Accordini et al. "SARS-CoV-2 vaccination elicits unconventional IgM specific re	9 words — < sponses in	1%

naïve and previously COVID-19-infected individuals", eBioMedicine, 2022

Crossref

9 words - < 1%Feyza Gül Özbay Kurt, Alisa Lepper, Catharina 51 Gerhards, Mathis Roemer et al. "Booster dose of mRNA vaccine augments waning T cell and antibody responses against SARS-CoV-2", Frontiers in Immunology, 2022 Crossref 9 words - < 1%Giulia Brisotto, Elena Muraro, Marcella Montico, 52 Chiara Corso et al. "IgG antibodies against SARS-CoV-2 decay but persist 4months after vaccination in a cohort of healthcare workers", Clinica Chimica Acta, 2021 Crossref Michela Bernardini, Alessia Brossa, Giorgia Chinigo, 9 words - < 1%53 Guillaume P. Grolez et al. "Transient Receptor Potential Channel Expression Signatures in Tumor-Derived Endothelial Cells: Functional Roles in Prostate Cancer Angiogenesis", Cancers, 2019 Crossref 9 words - < 1%Miku Nakai, Daisuke Yokoyama, Tomoaki Sato, 54 Ryohei Sato, Chiari Kojima, Tatsuo Shimosawa. "Variation in antibody titers determined by Abbott and Roche Elecsys SARS-CoV-2 assays in vaccinated healthcare workers", Heliyon, 2023 Crossref 9 words - < 1%assets.researchsquare.com 55 Internet $_{9 \text{ words}} - < 1\%$ bmjopen.bmj.com 56 Internet 9 words - < 1%d-nb.info Internet

58	Brian Grunau, Sheila F. O'Brien, Tracy L. Kirkham, $_{\rm Rwords}$ < 1 $\%$
	Jennie Helmer et al. "A Prospective Observational
	Cohort Comparison of SARS-CoV-2 Seroprevalence Between
	Paramedics and Matched Blood Donors in Canada During the
	COVID-19 Pandemic", Annals of Emergency Medicine, 2022 Crossref
50	Carolin Krekeler, Lea Reitnauer, Ulrike Bacher - 10/

Carolin Krekeler, Lea Reithauer, Ulrike Bacher, Cyrus Khandanpour et al. "Efficacy of COVID-19 Booster Vaccines in Patients with Hematologic Malignancies: Experiences in a Real-World Scenario", Cancers, 2022 Crossref

- 60 Kristen W. Cohen, Susanne L. Linderman, Zoe Moodie, Julie Czartoski et al. "Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells", Cell Reports Medicine, 2021 Crossref
- 61 Maurizio Bossù, Flavia Iaculli, Gianni Di Giorgio, Alessandro Salucci, Antonella Polimeni, Stefano Di Carlo. "Different Pulp Dressing Materials for the Pulpotomy of Primary Teeth: A Systematic Review of the Literature", Journal of Clinical Medicine, 2020 Crossref

CIUSSIEI

62 deepblue.lib.umich.edu Internet 8 words - < 1%

63 dx.doi.org

8 words _< 1%

8 words - < 1%

www.cdc.gov

65	Brian Grunau, David M. Goldfarb, Michael 7 Asamoah-Boaheng, Liam Golding, Tracy L.	words $- < 1\%$
	Kirkham, Paul A. Demers, Pascal M. Lavoie. "Immuno Extended mRNA SARS-CoV-2 Vaccine Dosing Interval	ogenicity of s", JAMA,
	Crossref	
		. 0/

Sheila F. O'Brien, Niamh Caffrey, Qi-Long Yi, Shelly Bolotin et al. "Cross-Canada Variability in Blood Donor SARS-CoV-2 Seroprevalence by Social Determinants of Health", Microbiology Spectrum, 2023 Crossref

- Michael Asamoah-Boaheng, David M Goldfarb, Martin Prusinkiewicz, Liam Golding et al.
 "Determining the optimal SARS-CoV-2 mRNA vaccine dosing interval for maximum immunogenicity", Cold Spring Harbor Laboratory, 2022 Crossref Posted Content
- 68 Rebecca P. Payne, Stephanie Longet, James A. Austin, Donal T. Skelly et al. "Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine", Cell, 2021 Crossref
- 69 Saitoh, Akihiko, Akira Nagai, Kazuyoshi Tenjinbaru, Ping Li, François Roman, and Tatsuo Kato. "Safety and persistence of immunological response 6 months after intramuscular vaccination with an AS03-adjuvanted H1N1 2009 influenza vaccine: An open-label, randomized trial in Japanese children aged 6 months to 17 years", Human Vaccines & Immunotherapeutics, 2012. _{Crossref}

4 words - < 1%

EXCLUDE QUOTES OFF EXCLUDE BIBLIOGRAPHY ON EXCLUDE SOURCES OFF EXCLUDE MATCHES OFF