Arboviruses and their Vectors

Curated by Journal of General Virology Editor Dr Eng Eong Ooi (Duke NUS Medical School) and Advisory Board Member Dr Esther Schnettler (Bernhard Nocht Institute for Tropical Medicine), this collection presents the latest advances in arbovirus research. This collection was launched in conjuction with IMAV 2017 and in line with IMAV 2019 welcomes submissions of original research articles, Insight Reviews and full-length Reviews.
Find out more about how to submit to the collection here.
Collection Contents
-
-
Mosquito-borne epornitic flaviviruses: an update and review
More LessWest Nile Virus, Usutu virus, Bagaza virus, Israel turkey encephalitis virus and Tembusu virus currently constitute the five flaviviruses transmitted by mosquito bites with a marked pathogenicity for birds. They have been identified as the causative agents of severe neurological symptoms, drop in egg production and/or mortalities among avian hosts. They have also recently shown an expansion of their geographic distribution and/or a rise in cases of human infection. This paper is the first up-to-date review of the pathology of these flaviviruses in birds, with a special emphasis on the difference in susceptibility among avian species, in order to understand the specificity of the host spectrum of each of these viruses. Furthermore, given the lack of a clear prophylactic approach against these viruses in birds, a meta-analysis of vaccination trials conducted to date on these animals is given to constitute a solid platform from which designing future studies.
-
-
-
Mitigating the risk of Zika virus contamination of raw materials and cell lines in the manufacture of biologicals
Ensuring the virological safety of biologicals is challenging due to the risk of viral contamination of raw materials and cell banks, and exposure during in-process handling to known and/or emerging viral pathogens. Viruses may contaminate raw materials and biologicals intended for human or veterinary use and remain undetected until appropriate testing measures are employed. The outbreak and expansive spread of the mosquito-borne flavivirus Zika virus (ZIKV) poses challenges to screening human- and animal -derived products used in the manufacture of biologicals. Here, we report the results of an in vitro study where detector cell lines were challenged with African and Asian lineages of ZIKV. We demonstrate that this pathogen is robustly detectable by in vitro assay, thereby providing assurance of detection of ZIKV, and in turn underpinning the robustness of in vitro virology assays in safety testing of biologicals.
-
-
-
Marmosets (Callithrix jacchus) as a non-human primate model for evaluation of candidate dengue vaccines: induction and maintenance of specific protective immunity against challenges with clinical isolates
Dengue virus (DENV) is one of the major infectious diseases in tropical regions and approximately half of the world population is at risk of infection. Vaccines would offer an effective control measure against this disease. We previously reported on the utility of marmosets as an animal model for studying primary and secondary dengue infections. Infected marmosets consistently develop viraemia and antibody kinetics that reflect those of patients with dengue. Thus, it is important to determine the utility of marmosets as an animal model for demonstrating vaccine efficacy. In this study, marmosets were inoculated with candidate vaccine and parent strains and challenged with a clinical DENV strain. The viraemia and antibody kinetics in these marmosets were determined. Marmosets consistently develop lower viraemia with an attenuated vaccine strain. During secondary challenge, the IgM response was delayed, whereas the IgG levels rose rapidly, indicating a secondary antibody response. The neutralizing activities against the homotypic serotype were high; all marmosets were protected against viraemia following secondary inoculation. The viraemia markers and antibody responses were consistent with those of human DENV infection and vaccinees. These results demonstrate the utility of marmosets as an animal model for the study of vaccine efficacy.
-