Coronaviruses

Coronaviruses are a large family of viruses that can infect a range of hosts. They are known to cause diseases including the common cold, Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in humans.
In January 2020, China saw an outbreak of a new coronavirus strain now named SARS-CoV-2. Although the animal reservoir for the SARS and MERS viruses are known, this has yet to have been confirmed for SARS-CoV-2. All three strains are transmissible between humans.
To allow the widest possible distribution of relevant research, the Microbiology Society has brought together articles from across our portfolio and made this content freely available.
Image credit: "MERS-CoV" by NIAID is licensed under CC BY 2.0, this image has been modified.
Collection Contents
-
-
High SARS-CoV-2 viral load is associated with a worse clinical outcome of COVID-19 disease
María Eugenia Soria, Marta Cortón, Brenda Martínez-González, Rebeca Lobo-Vega, Lucía Vázquez-Sirvent, Rosario López-Rodríguez, Berta Almoguera, Ignacio Mahillo, Pablo Mínguez, Antonio Herrero, Juan Carlos Taracido, Alicia Macías-Valcayo, Jaime Esteban, Ricardo Fernandez-Roblas, Ignacio Gadea, Javier Ruíz-Hornillos, Carmen Ayuso and Celia PeralesCOVID-19 severity and progression are determined by several host and virological factors that may influence the final outcome of SARS-CoV-2-infected patients. The objective of this work was to determine a possible association between viral load, obtained from nasopharyngeal swabs, and the severity of the infection in a cohort of 448 SARS-CoV-2-infected patients from a hospital in Madrid during the first outbreak of the pandemic in Spain. To perform this, we clinically classified patients as mild, moderate and severe COVID-19 according to a number of clinical parameters such as hospitalization requirement, need of oxygen therapy, admission to intensive care units and/or death. Also, Ct values were determined using SARS-CoV-2-specific oligonucleotides directed to ORF1ab. Here we report a statistically significant association between viral load and disease severity, a high viral load being associated with worse clinical prognosis, independently of several previously identified risk factors such as age, sex, hypertension, cardiovascular disease, diabetes, obesity and lung disease (asthma and chronic obstructive pulmonary disease). The data presented here reinforce viral load as a potential biomarker for predicting disease severity in SARS-CoV-2-infected patients. It is also an important parameter in viral evolution since it relates to the numbers and types of variant genomes present in a viral population, a potential determinant of disease progression.
-
-
-
Human convalescent plasma protects K18-hACE2 mice against severe respiratory disease
SARS-CoV-2 is the causative agent of COVID-19 and human infections have resulted in a global health emergency. Small animal models that reproduce key elements of SARS-CoV-2 human infections are needed to rigorously screen candidate drugs to mitigate severe disease and prevent the spread of SARS-CoV-2. We and others have reported that transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the Keratin 18 (K18) promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge. Here we report that some infected mice that survive challenge have residual pulmonary damages and persistent brain infection on day 28 post-infection despite the presence of anti-SARS-COV-2 neutralizing antibodies. Because of the hypersensitivity of K18-hACE2 mice to SARS-CoV-2 and the propensity of virus to infect the brain, we sought to determine if anti-infective biologics could protect against disease in this model system. We demonstrate that anti-SARS-CoV-2 human convalescent plasma protects K18-hACE2 against severe disease. All control mice succumbed to disease by day 7; however, all treated mice survived infection without observable signs of disease. In marked contrast to control mice, viral antigen and lesions were reduced or absent from lungs and absent in brains of antibody-treated mice. Our findings support the use of K18-hACE2 mice for protective efficacy studies of anti-SARS-CoV-2 medical countermeasures (MCMs). They also support the use of this system to study SARS-CoV-2 persistence and host recovery.
-
-
-
Hamster and ferret experimental infection with intranasal low dose of a single strain of SARS-CoV-2
Understanding the pathogenesis of the SARS-CoV-2 infection is key to developing preventive and therapeutic strategies against COVID-19, in the case of severe illness but also when the disease is mild. The use of appropriate experimental animal models remains central in the in vivo exploration of the physiopathology of infection and antiviral strategies. This study describes SARS-CoV-2 intranasal infection in ferrets and hamsters with low doses of low-passage SARS-CoV-2 clinical French isolate UCN19, describing infection levels, excretion, immune responses and pathological patterns in both animal species. Individual infection with 103 p.f.u. SARS-CoV-2 induced a more severe disease in hamsters than in ferrets. Viral RNA was detected in the lungs of hamsters but not of ferrets and in the brain (olfactory bulb and/or medulla oblongata) of both species. Overall, the clinical disease remained mild, with serological responses detected from 7 days and 10 days post-inoculation in hamsters and ferrets respectively. The virus became undetectable and pathology resolved within 14 days. The kinetics and levels of infection can be used in ferrets and hamsters as experimental models for understanding the pathogenicity of SARS-CoV-2, and testing the protective effect of drugs.
-
-
-
Highly diversified coronaviruses in neotropical bats
Victor Max Corman, Andrea Rasche, Thierno Diawo Diallo, Veronika M. Cottontail, Andreas Stöcker, Breno Frederico de Carvalho Dominguez Souza, Jefferson Ivan Corrêa, Aroldo José Borges Carneiro, Carlos Roberto Franke, Martina Nagy, Markus Metz, Mirjam Knörnschild, Elisabeth K. V. Kalko, Simon J. Ghanem, Karen D. Sibaja Morales, Egoitz Salsamendi, Manuel Spínola, Georg Herrler, Christian C. Voigt, Marco Tschapka, Christian Drosten and Jan Felix DrexlerBats host a broad diversity of coronaviruses (CoVs), including close relatives of human pathogens. There is only limited data on neotropical bat CoVs. We analysed faecal, blood and intestine specimens from 1562 bats sampled in Costa Rica, Panama, Ecuador and Brazil for CoVs by broad-range PCR. CoV RNA was detected in 50 bats representing nine different species, both frugivorous and insectivorous. These bat CoVs were unrelated to known human or animal pathogens, indicating an absence of recent zoonotic spill-over events. Based on RNA-dependent RNA polymerase (RdRp)-based grouping units (RGUs) as a surrogate for CoV species identification, the 50 viruses represented five different alphacoronavirus RGUs and two betacoronavirus RGUs. Closely related alphacoronaviruses were detected in Carollia perspicillata and C. brevicauda across a geographical distance exceeding 5600 km. Our study expands the knowledge on CoV diversity in neotropical bats and emphasizes the association of distinct CoVs and bat host genera.
-
-
-
High level transient expression of the murine coronavirus haemagglutinin-esterase
More LessWe have expressed the murine coronavirus haemagglutinin-esterase protein in a vaccinia virus/T7 RNA polymerase system. The levels of expression observed are significantly higher than those found in virus-infected cells. The expressed protein has both receptor-destroying (esterase) and receptor-binding (haemad-sorption) activities. The use of this system will greatly facilitate analysis of the structure-function relationships of this protein.
-
-
-
Hybridoma Antibodies to the Murine Coronavirus JHM: Characterization of Epitopes on the Peplomer Protein (E2)
More LessSUMMARYA panel of hybridoma antibodies that react with the surface peplomer glycoprotein (E2) of the murine coronavirus JHM were produced to characterize major antigenic domains associated with functions related to virulence. Three groups of hybridoma antibodies were differentiated by immunoprecipitation of lysates from JHM-infected cells. One group precipitated the virion structural proteins gp170 and gp98 together with the intracellular form of E2, gp150. A second group reacted with gp98 and gp150, and a third group precipitated gp150 only. Competition assays with biotinylated hybridoma antibodies allowed the definition of at least six different epitope groups. Only those antibodies which immunoprecipitated both gp170 and gp98 neutralized infectivity, inhibited cell fusion and protected infected rats against acute disease. Another class of antibodies binding to gp170 and gp98 also neutralized JHM virus, but did not inhibit fusion and did not protect against disease. Antibodies that immunoprecipitated gp150 and gp98 revealed only weak neutralization and did not inhibit cell fusion or protect animals. Four epitopes were defined by antibodies that immunoprecipitated gp150, but revealed no biological activity. These data indicate that the site responsible for cell fusion is associated with an epitope group carried by gp170 and gp98. Neutralizing antibodies bind to this and another epitope. Furthermore, protection of JHM-infected rats against acute disease requires both inhibition of cell fusion and neutralization of virus.
-
-
-
Haemagglutination by Avian Infectious Bronchitis Virus – a Coronavirus
More LessSummaryThe haemagglutinating ability of three strains of IBV was investigated. It was shown that whereas strain Beaudette had no detectable haemagglutinin, both Connecticut and Massachusetts agglutinated red cells of various species. The haemagglutinin of Connecticut was detectable after sucrose gradient purification whereas that of Massachusetts required both the purification step and incubation with the enzyme phospholipase C to reveal it. The agglutination could be inhibited by specific antisera. Some studies on the nature of the red cell receptor, and the possible presence of a receptor destroying enzyme, are reported.
-