Arboviruses and their Vectors

Curated by Journal of General Virology Editor Dr Eng Eong Ooi (Duke NUS Medical School) and Advisory Board Member Dr Esther Schnettler (Bernhard Nocht Institute for Tropical Medicine), this collection presents the latest advances in arbovirus research. This collection was launched in conjuction with IMAV 2017 and in line with IMAV 2019 welcomes submissions of original research articles, Insight Reviews and full-length Reviews.
Find out more about how to submit to the collection here.
Collection Contents
-
-
Human glucose-regulated protein 78 modulates intracellular production and secretion of nonstructural protein 1 of dengue virus
Virus-host interactions play important roles in virus infection and host cellular response. Several viruses, including dengue virus (DENV), usurp host chaperones to support their amplification and survival in the host cell. We investigated the interaction of nonstructural protein 1 (NS1) of DENV with three endoplasmic reticulum-resident chaperones (i.e. GRP78, calnexin and calreticulin) to delineate their functional roles and potential binding sites for protein complex formation. GRP78 protein showed prominent association with DENV NS1 in virus-infected Huh7 cells as evidenced by co-localization and co-immunoprecipitation assays. Further studies on the functional interaction of GRP78 protein were performed by using siRNA-mediated gene knockdown in a DENV replicon transfection system. GRP78 knockdown significantly decreased intracellular NS1 production and delayed NS1 secretion but had no effect on viral RNA replication. Dissecting the important domain of GRP78 required for DENV NS1 interaction showed co-immunoprecipitation of DENV NS1 with a full-length and substrate-binding domain (SBD), but not an ATPase domain, of GRP78, confirming their interaction through SBD binding. Molecular dynamics simulations of DENV NS1 and human GRP78 complex revealed their potential binding sites through hydrogen and hydrophobic bonding. The majority of GRP78-binding sites were located in a β-roll domain and connector subdomains on the DENV NS1 structure involved in hydrophobic surface formation. Taken together, our findings demonstrated the roles of human GRP78 in facilitating the intracellular production and secretion of DENV NS1 as well as predicted potential binding sites between the DENV NS1 and GRP78 complex, which could have implications in the future development of target-based antiviral drugs.
-
-
-
Heterogeneity of clinical isolates of chikungunya virus and its impact on the responses of primary human fibroblast-like synoviocytes
Low-passage clinical isolates of chikungunya virus (CHIKV) were found to be a mixture of large- and small-plaque viruses, with small-plaque viruses being the predominant species. To investigate the contribution of plaque variants to the pathology of the joint, primary human fibroblast-like synoviocytes (HFLS) were used. Large- and small-plaque viruses were purified from two clinical isolates, CHIKV-031C and CHIKV-033C, and were designated CHIKV-031L and CHIKV-031S and CHIKV-033L and CHIKV-033S, respectively. The replication efficiencies of these viruses in HFLSs were compared and it was found that CHIKV-031S and CHIKV-033S replicated with the highest efficiency, while the parental clinical isolates had the lowest efficiency. Interestingly, the cytopathic effects (CPE) induced by these viruses correlated with neither the efficiency of replication nor the plaque size. The small-plaque viruses and the clinical isolates induced cell death rapidly, while large-plaque viruses induced slow CPE in which only 50 % of the cells in infected cultures were rounded up and detached on day 5 of infection. The production of proinflammatory cytokines and chemokines from infected HFLSs was evaluated. The results showed that the large-plaque viruses and the clinical isolates, but not small-plaque variants, were potent inducers of IL-6, IL-8 and MCP-1, and were able to migrate monocytes/macrophages efficiently. Sequencing data revealed a number of differences in amino acid sequences between the small- and large-plaque viruses. The results suggest that it is common for clinical isolates of CHIKV to be heterogeneous, while the variants may have distinct roles in the pathology of the joint.
-