Ebola Virus Disease (EVD)

Ebola first became headline news in 2014–2016 when it was transmitted throughout West Africa. In 2019, this severe and often fatal disease has once again been declared a public health emergency of international concern (PHEIC) with over 1700 deaths in this latest outbreak. With vaccines now available, this outbreak could be contained, but only with increased production and delivery of vaccines within the Democratic Republic of Congo.
This collection brings together articles from our portfolio of journals on Ebola virus disease. The Microbiology Society has made this content freely available in the interests of widest possible distribution of relevant research.
Collection Contents
-
-
Generation, lyophilisation and epitope modification of high titre filovirus pseudotyped lentiviruses for use in antibody neutralisation assays and ELISA
The 2014–2016 Ebola outbreak in West Africa highlighted the need for improved diagnostics, surveillance and therapeutics for filoviruses. The need for high containment virus handling facilities creates a bottleneck hindering research efforts. A safe alternative to working with native viruses are pseudotyped viruses (PV) which are non-replicating particles bearing surface glycoprotein(s) that can be used for antibody detection. The aim of this study was to create a diagnostic tool to distinguish between genera and species of pathogenic filoviruses (e.g. neutralization tests and ELISA), avoiding the cross reactivity currently seen. High titre PVs bearing the receptor glycoprotein (GP) of different filovirus species, plus specific epitope chimeras, were successfully generated. Next, lyophilisation studies to assess particle stability/degradation transportation and long-term storage were conducted. Filoviruses maintained their titres for at least 1.5 years after lyophilisation when kept in temperatures of up to 4 °C, with all filovirus genera following a similar trend. At higher temperatures, PVs degraded to unworkable titres. Reconstituted PVs also performed well in neutralisation assays. A chimeric cuevavirus GP bearing ebolavirus (Zaire sp.) epitopes KZ52 and 1 H3 retained infectivity, with average titres of approximately 1×10 7 RLU ml−1, similar to wild type, indicating its structure was not compromised. These chimeras are now being assessed in neutralisation tests using specific monoclonal antibodies and incorporated into ELISA with PVs as antigens. The data suggests lyophilised PVs are amenable to long-term storage, and their GPs can be modified to create artificial antigens for diagnostics and serosurveillance.
-
-
-
Genus-specific recruitment of filovirus ribonucleoprotein complexes into budding particles
The filoviral matrix protein VP40 orchestrates virus morphogenesis and budding. To do this it interacts with both the glycoprotein (GP1,2) and the ribonucleoprotein (RNP) complex components; however, these interactions are still not well understood. Here we show that for efficient VP40-driven formation of transcription and replication-competent virus-like particles (trVLPs), which contain both an RNP complex and GP1,2, the RNP components and VP40, but not GP1,2 and VP40, must be from the same genus. trVLP preparations contained both spherical and filamentous particles, but only the latter were able to infect target cells and to lead to genome replication and transcription. Interestingly, the genus specificity of the VP40–RNP interactions was specific to the formation of filamentous trVLPs, but not to spherical particles. These results not only further our understanding of VP40 interactions, but also suggest that special care is required when using trVLP or VLP systems to model virus morphogenesis.
-
-
-
Generation of an adenoviral vaccine vector based on simian adenovirus 21
Adenoviral vectors can be used to generate potent humoral and cellular immune responses to transgene products. Use of adenoviral vectors based on non-human isolates may allow for their utilization in populations harbouring neutralizing antibodies to common human serotypes. A vector chimera was constructed using simian adenovirus 22 (a serotype belonging to the species Human adenovirus E) and simian adenovirus 21 (a serotype belonging to the species Human adenovirus B) expressing the Ebola (Zaire) virus glycoprotein (Ad C5/C1-ZGP). This chimeric adenovirus vector was used as a model to test its efficacy as a genetic vaccine and comparisons were made to a vector based on the commonly used human adenovirus C serotype 5 (Adhu5-ZGP). Ebola glycoprotein-specific T- and B-cell responses were measured in B10BR mice vaccinated with either Adhu5-ZGP or Ad C5/C1-ZGP vectors. Both vectors resulted in Ebola glycoprotein-specific gamma interferon-expressing T cells, although the Ad C5/C1-ZGP vector appeared to induce lower frequencies with kinetics slower than those elicited by the Adhu5-ZGP vector. The total immunoglobulin G response to Ebola glycoprotein was similar in sera from mice vaccinated with either vector. Two rhesus macaques vaccinated with the Ad C5/C1-ZGP vector were found to mount T-cell and antibody responses to the Ebola glycoprotein. It was found that a single administration of the chimeric Ad C5/C1-ZGP vector protected mice against a lethal challenge with a mouse-adapted strain of the Ebola (Zaire) virus.
-