Coronaviruses

Coronaviruses are a large family of viruses that can infect a range of hosts. They are known to cause diseases including the common cold, Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in humans.
In January 2020, China saw an outbreak of a new coronavirus strain now named SARS-CoV-2. Although the animal reservoir for the SARS and MERS viruses are known, this has yet to have been confirmed for SARS-CoV-2. All three strains are transmissible between humans.
To allow the widest possible distribution of relevant research, the Microbiology Society has brought together articles from across our portfolio and made this content freely available.
Image credit: "MERS-CoV" by NIAID is licensed under CC BY 2.0, this image has been modified.
Collection Contents
61 - 80 of 298 results
-
-
Assessment of inactivation procedures for SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), presents a challenge to laboratorians and healthcare workers around the world. Handling of biological samples from individuals infected with the SARS-CoV-2 virus requires strict biosafety measures. Within the laboratory, non-propagative work with samples containing the virus requires, at minimum, Biosafety Level-2 (BSL-2) techniques and facilities. Therefore, handling of SARS-CoV-2 samples remains a major concern in areas and conditions where biosafety for specimen handling is difficult to maintain, such as in rural laboratories or austere field testing sites. Inactivation through physical or chemical means can reduce the risk of handling live virus and increase testing ability especially in low-resource settings due to easier and faster sample processing. Herein we assess several chemical and physical inactivation techniques employed against SARS-CoV-2 isolates from Cambodia. This data demonstrates that all chemical (AVL, inactivating sample buffer and formaldehyde) and heat-treatment (56 and 98 °C) methods tested completely inactivated viral loads of up to 5 log10.
-
-
-
Hamster and ferret experimental infection with intranasal low dose of a single strain of SARS-CoV-2
Understanding the pathogenesis of the SARS-CoV-2 infection is key to developing preventive and therapeutic strategies against COVID-19, in the case of severe illness but also when the disease is mild. The use of appropriate experimental animal models remains central in the in vivo exploration of the physiopathology of infection and antiviral strategies. This study describes SARS-CoV-2 intranasal infection in ferrets and hamsters with low doses of low-passage SARS-CoV-2 clinical French isolate UCN19, describing infection levels, excretion, immune responses and pathological patterns in both animal species. Individual infection with 103 p.f.u. SARS-CoV-2 induced a more severe disease in hamsters than in ferrets. Viral RNA was detected in the lungs of hamsters but not of ferrets and in the brain (olfactory bulb and/or medulla oblongata) of both species. Overall, the clinical disease remained mild, with serological responses detected from 7 days and 10 days post-inoculation in hamsters and ferrets respectively. The virus became undetectable and pathology resolved within 14 days. The kinetics and levels of infection can be used in ferrets and hamsters as experimental models for understanding the pathogenicity of SARS-CoV-2, and testing the protective effect of drugs.
-
-
-
Targeting novel structural and functional features of coronavirus protease nsp5 (3CLpro, Mpro) in the age of COVID-19
More LessCoronavirus protease nsp5 (M pro , 3CL pro ) remains a primary target for coronavirus therapeutics due to its indispensable and conserved role in the proteolytic processing of the viral replicase polyproteins. In this review, we discuss the diversity of known coronaviruses, the role of nsp5 in coronavirus biology, and the structure and function of this protease across the diversity of known coronaviruses, and evaluate past and present efforts to develop inhibitors to the nsp5 protease with a particular emphasis on new and mostly unexplored potential targets of inhibition. With the recent emergence of pandemic SARS-CoV-2, this review provides novel and potentially innovative strategies and directions to develop effective therapeutics against the coronavirus protease nsp5.
-
-
-
Understanding the outcomes of COVID-19 – does the current model of an acute respiratory infection really fit?
More LessAlthough coronavirus disease 2019 (COVID-19) is regarded as an acute, resolving infection followed by the development of protective immunity, recent systematic literature review documents evidence for often highly prolonged shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory and faecal samples, periodic recurrence of PCR positivity in a substantial proportion of individuals and increasingly documented instances of reinfection associated with a lack of protective immunity. This pattern of infection is quite distinct from the acute/resolving nature of other human pathogenic respiratory viruses, such as influenza A virus and respiratory syncytial virus. Prolonged shedding of SARS-CoV-2 furthermore occurs irrespective of disease severity or development of virus-neutralizing antibodies. SARS-CoV-2 possesses an intensely structured RNA genome, an attribute shared with other human and veterinary coronaviruses and with other mammalian RNA viruses such as hepatitis C virus. These are capable of long-term persistence, possibly through poorly understood RNA structure-mediated effects on innate and adaptive host immune responses. The assumption that resolution of COVID-19 and the appearance of anti-SARS-CoV-2 IgG antibodies represents virus clearance and protection from reinfection, implicit for example in the susceptible–infected–recovered (SIR) model used for epidemic prediction, should be rigorously re-evaluated.
-
-
-
Detection of SARS-CoV-2 in saliva: implications for specimen transport and storage
Saliva has recently been proposed as a suitable specimen for the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Use of saliva as a diagnostic specimen may present opportunities for SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) testing in remote and low-resource settings. Determining the stability of SARS-CoV-2 RNA in saliva over time is an important step in determining optimal storage and transport times. We undertook an in vitro study to assess whether SARS-CoV-2 could be detected in contrived saliva samples. The contrived saliva samples comprised 10 ml pooled saliva spiked with gamma-irradiated SARS-CoV-2 to achieve a concentration of 2.58×104 copies ml SARS-CoV-2, which was subsequently divided into 2 ml aliquots comprising: (i) neat saliva; and a 1 : 1 dilution with (ii) normal saline; (iii) viral transport media, and (iv) liquid Amies medium. Contrived samples were made in quadruplicate, with two samples of each stored at either: (i) room temperature or (ii) 4 °C. SARS-CoV-2 was detected in all SARS-CoV-2 spiked samples at time point 0, day 1, 3 and 7 at both storage temperatures using the N gene RT-PCR assay and time point 0, day 1 and day 7 using the Xpert Xpress SARS-CoV-2 (Cepheid, Sunnyvale, USA) RT-PCR assay. The ability to detect SARS-CoV-2 in saliva over a 1 week period is an important finding that presents further opportunities for saliva testing as a diagnostic specimen for the diagnosis of SARS-CoV-2.
-
-
-
Predicting the recombination potential of severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged to cause widespread infections in humans. SARS-CoV-2 infections have been reported in the Kingdom of Saudi Arabia, where Middle East respiratory syndrome coronavirus (MERS-CoV) causes seasonal outbreaks with a case fatality rate of ~37 %. Here we show that there exists a theoretical possibility of future recombination events between SARS-CoV-2 and MERS-CoV RNA. Through computational analyses, we have identified homologous genomic regions within the ORF1ab and S genes that could facilitate recombination, and have analysed co-expression patterns of the cellular receptors for SARS-CoV-2 and MERS-CoV, ACE2 and DPP4, respectively, to identify human anatomical sites that could facilitate co-infection. Furthermore, we have investigated the likely susceptibility of various animal species to MERS-CoV and SARS-CoV-2 infection by comparing known virus spike protein–receptor interacting residues. In conclusion, we suggest that a recombination between SARS-CoV-2 and MERS-CoV RNA is possible and urge public health laboratories in high-risk areas to develop diagnostic capability for the detection of recombined coronaviruses in patient samples.
-
-
-
Identification of a SARS-like bat coronavirus that shares structural features with the spike glycoprotein receptor-binding domain of SARS-CoV-2
More LessSARS-CoV-2 is a recently emerged coronavirus that binds angiotensin-converting enzyme 2 (ACE2) for cell entry via its receptor-binding domain (RBD) on a surface-expressed spike glycoprotein. Studies show that despite its similarities to severe acute respiratory syndrome (SARS) coronavirus, there are critical differences in key RBD residues when compared to SARS-CoV-2. Here we present a short in silico study, showing that SARS-like bat coronavirus Rs3367 shares a high conservation with SARS-CoV-2 in important RBD residues for ACE2 binding: SARS-CoV-2’s Phe486, Thr500, Asn501 and Tyr505; implicated in receptor-binding strength and host-range determination. These features were not shared with other studied bat coronaviruses belonging to the betacoronavirus genus, including RaTG13, the closest reported bat coronavirus to SARS-CoV-2’s spike protein. Sequence and phylogeny analyses were followed by the computation of a reliable model of the RBD of SARS-like bat coronavirus Rs3367, which allowed structural insight of the conserved residues. Superimposition of this model on the SARS-CoV-2 ACE2-RBD complex revealed critical ACE2 contacts are also maintained. In addition, residue Asn488Rs3367 interacted with a previously defined pocket on ACE2 composed of Tyr41, Lys353 and Asp355. When compared to available SARS-CoV-2 crystal structure data, Asn501SARS-CoV-2 showed a different interaction with the ACE2 pocket. Taken together, this study offers molecular insights on RBD-receptor interactions with implications for vaccine design.
-
-
-
SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), emerged at the end of 2019 and by mid-June 2020 the virus had spread to at least 215 countries, caused more than 8 000 000 confirmed infections and over 450 000 deaths, and overwhelmed healthcare systems worldwide. Like severe acute respiratory syndrome coronavirus (SARS-CoV), which emerged in 2002 and caused a similar disease, SARS-CoV-2 is a betacoronavirus. Both viruses use human angiotensin-converting enzyme 2 (hACE2) as a receptor to enter cells. However, the SARS-CoV-2 spike (S) glycoprotein has a novel insertion that generates a putative furin cleavage signal and this has been postulated to expand the host range. Two low-passage (P) strains of SARS-CoV-2 (Wash1 : P4 and Munich : P1) were cultured twice in Vero E6 cells and characterized virologically. Sanger and MinION sequencing demonstrated significant deletions in the furin cleavage signal of Wash1 : P6 and minor variants in the Munich : P3 strain. Cleavage of the S glycoprotein in SARS-CoV-2-infected Vero E6 cell lysates was inefficient even when an intact furin cleavage signal was present. Indirect immunofluorescence demonstrated that the S glycoprotein reached the cell surface. Since the S protein is a major antigenic target for the development of neutralizing antibodies, we investigated the development of neutralizing antibody titres in serial serum samples obtained from COVID-19 human patients. These were comparable regardless of the presence of an intact or deleted furin cleavage signal. These studies illustrate the need to characterize virus stocks meticulously prior to performing either in vitro or in vivo pathogenesis studies.
-
-
-
A novel antiviral formulation inhibits a range of enveloped viruses
Some free fatty acids derived from milk and vegetable oils are known to have potent antiviral and antibacterial properties. However, therapeutic applications of short- to medium-chain fatty acids are limited by physical characteristics such as immiscibility in aqueous solutions. We evaluated a novel proprietary formulation based on an emulsion of short-chain caprylic acid, ViroSAL, for its ability to inhibit a range of viral infections in vitro and in vivo. In vitro, ViroSAL inhibited the enveloped viruses Epstein–Barr, measles, herpes simplex, Zika and orf parapoxvirus, together with Ebola, Lassa, vesicular stomatitis and severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) pseudoviruses, in a concentration- and time-dependent manner. Evaluation of the components of ViroSAL revealed that caprylic acid was the main antiviral component; however, the ViroSAL formulation significantly inhibited viral entry compared with caprylic acid alone. In vivo, ViroSAL significantly inhibited Zika and Semliki Forest virus replication in mice following the inoculation of these viruses into mosquito bite sites. In agreement with studies investigating other free fatty acids, ViroSAL had no effect on norovirus, a non-enveloped virus, indicating that its mechanism of action may be surfactant disruption of the viral envelope. We have identified a novel antiviral formulation that is of great interest for the prevention and/or treatment of a broad range of enveloped viruses, particularly those of the skin and mucosal surfaces.
-
-
-
A putative new SARS-CoV protein, 3c, encoded in an ORF overlapping ORF3a
More LessIdentification of the full complement of genes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a crucial step towards gaining a fuller understanding of its molecular biology. However, short and/or overlapping genes can be difficult to detect using conventional computational approaches, whereas high-throughput experimental approaches – such as ribosome profiling – cannot distinguish translation of functional peptides from regulatory translation or translational noise. By studying regions showing enhanced conservation at synonymous sites in alignments of SARS-CoV-2 and related viruses (subgenus Sarbecovirus) and correlating the results with the conserved presence of an open reading frame (ORF) and a plausible translation mechanism, a putative new gene – ORF3c – was identified. ORF3c overlaps ORF3a in an alternative reading frame. A recently published ribosome profiling study confirmed that ORF3c is indeed translated during infection. ORF3c is conserved across the subgenus Sarbecovirus, and encodes a 40–41 amino acid predicted transmembrane protein.
-
-
-
Antiviral and virucidal effects of curcumin on transmissible gastroenteritis virus in vitro
More LessEmerging coronaviruses represent serious threats to human and animal health worldwide, and no approved therapeutics are currently available. Here, we used Transmissible gastroenteritis virus (TGEV) as the alpha-coronavirus model, and investigated the antiviral properties of curcumin against TGEV. Our results demonstrated that curcumin strongly inhibited TGEV proliferation and viral protein expression in a dose-dependent manner. We also observed that curcumin exhibited direct virucidal abilities in a dose-, temperature- and time-dependent manner. Furthermore, time-of-addition assays showed that curcumin mainly acted in the early phase of TGEV replication. Notably, in an adsorption assay, curcumin at 40 µM resulted in a reduction in viral titres of 3.55 log TCID50 ml–1, indicating that curcumin possesses excellent inhibitory effects on the adsorption of TGEV. Collectively, we demonstrate for the first time that curcumin has virucidal activity and virtual inhibition against TGEV, suggesting that curcumin might be a candidate drug for effective control of TGEV infection.
-
-
-
Insights into SARS-CoV-2, the Coronavirus Underlying COVID-19: Recent Genomic Data and the Development of Reverse Genetics Systems
The emergence and rapid worldwide spread of a novel pandemic of acute respiratory disease – eventually named coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO) – across the human population has raised great concerns. It prompted a mobilization around the globe to study the underlying pathogen, a close relative of severe acute respiratory syndrome coronavirus (SARS-CoV) called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Numerous genome sequences of SARS-CoV-2 are now available and in-depth analyses are advancing. These will allow detailed characterization of sequence and protein functions, including comparative studies. Care should be taken when inferring function from sequence information alone, and reverse genetics systems can be used to unequivocally identify key features. For example, the molecular markers of virulence, host range and transmissibility of SARS-CoV-2 can be compared to those of related viruses in order to shed light on the biology of this emerging pathogen. Here, we summarize some recent insights from genomic studies and strategies for reverse genetics systems to generate recombinant viruses, which will be useful to investigate viral genome properties and evolution.
-
-
-
Multiple novel non-canonically transcribed sub-genomic mRNAs produced by avian coronavirus infectious bronchitis virus
Coronavirus sub-genomic mRNA (sgmRNA) synthesis occurs via a process of discontinuous transcription involving complementary transcription regulatory sequences (TRSs), one (TRS-L) encompassing the leader sequence of the 5′ untranslated region (UTR), and the other upstream of each structural and accessory gene (TRS-B). Several coronaviruses have an ORF located between the N gene and the 3′-UTR, an area previously thought to be non-coding in the Gammacoronavirus infectious bronchitis virus (IBV) due to a lack of a canonical TRS-B. Here, we identify a non-canonical TRS-B allowing for a novel sgmRNA relating to this ORF to be produced in several strains of IBV: Beaudette, CR88, H120, D1466, Italy-02 and QX. Interestingly, the potential protein produced by this ORF is prematurely truncated in the Beaudette strain. A single nucleotide deletion was made in the Beaudette strain allowing for the generation of a recombinant IBV (rIBV) that had the potential to express a full-length protein. Assessment of this rIBV in vitro demonstrated that restoration of the full-length potential protein had no effect on viral replication. Further assessment of the Beaudette-derived RNA identified a second non-canonically transcribed sgmRNA located within gene 2. Deep sequencing analysis of allantoic fluid from Beaudette-infected embryonated eggs confirmed the presence of both the newly identified non-canonically transcribed sgmRNAs and highlighted the potential for further yet unidentified sgmRNAs. This HiSeq data, alongside the confirmation of non-canonically transcribed sgmRNAs, indicates the potential of the coronavirus genome to encode a larger repertoire of genes than has currently been identified.
-
-
-
Zinc sulfate in combination with a zinc ionophore may improve outcomes in hospitalized COVID-19 patients
Introduction. COVID-19 has rapidly emerged as a pandemic infection that has caused significant mortality and economic losses. Potential therapies and prophylaxis against COVID-19 are urgently needed to combat this novel infection. As a result of in vitro evidence suggesting zinc sulphate may be efficacious against COVID-19, our hospitals began using zinc sulphate as add-on therapy to hydroxychloroquine and azithromycin.
Aim. To compare outcomes among hospitalized COVID-19 patients ordered to receive hydroxychloroquine and azithromycin plus zinc sulphate versus hydroxychloroquine and azithromycin alone.
Methodology. This was a retrospective observational study. Data was collected from medical records for all patients with admission dates ranging from 2 March 2020 through to 11 April 2020. Initial clinical characteristics on presentation, medications given during the hospitalization, and hospital outcomes were recorded. The study included patients admitted to any of four acute care NYU Langone Health Hospitals in New York City. Patients included were admitted to the hospital with at least one positive COVID-19 test and had completed their hospitalization. Patients were excluded from the study if they were never admitted to the hospital or if there was an order for other investigational therapies for COVID-19.
Results. Patients taking zinc sulphate in addition to hydroxychloroquine and azithromycin (n=411) and patients taking hydroxychloroquine and azithromycin alone (n=521) did not differ in age, race, sex, tobacco use or relevant comorbidities. The addition of zinc sulphate did not impact the length of hospitalization, duration of ventilation or intensive care unit (ICU) duration. In univariate analyses, zinc sulphate increased the frequency of patients being discharged home, and decreased the need for ventilation, admission to the ICU and mortality or transfer to hospice for patients who were never admitted to the ICU. After adjusting for the time at which zinc sulphate was added to our protocol, an increased frequency of being discharged home (OR 1.53, 95 % CI 1.12–2.09) and reduction in mortality or transfer to hospice among patients who did not require ICU level of care remained significant (OR 0.449, 95 % CI 0.271–0.744).
Conclusion. This study provides the first in vivo evidence that zinc sulphate may play a role in therapeutic management for COVID-19.
-
-
-
Molecular simulation of SARS-CoV-2 spike protein binding to pangolin ACE2 or human ACE2 natural variants reveals altered susceptibility to infection
More LessWe constructed complex models of SARS-CoV-2 spike protein binding to pangolin or human ACE2, the receptor for virus transmission, and estimated the binding free energy changes using molecular dynamics simulation. SARS-CoV-2 can bind to both pangolin and human ACE2, but has a significantly lower binding affinity for pangolin ACE2 due to the increased binding free energy (9.5 kcal mol−1). Human ACE2 is among the most polymorphous genes, for which we identified 317 missense single-nucleotide variations (SNVs) from the dbSNP database. Three SNVs, E329G (rs143936283), M82I (rs267606406) and K26R (rs4646116), had a significant reduction in binding free energy, which indicated higher binding affinity than wild-type ACE2 and greater susceptibility to SARS-CoV-2 infection for people with them. Three other SNVs, D355N (rs961360700), E37K (rs146676783) and I21T (rs1244687367), had a significant increase in binding free energy, which indicated lower binding affinity and reduced susceptibility to SARS-CoV-2 infection.
-
-
-
SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology
The sudden emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 from the Chinese province of Hubei and its subsequent pandemic spread highlight the importance of understanding the full molecular details of coronavirus infection and pathogenesis. Here, we compared a variety of replication features of SARS-CoV-2 and SARS-CoV and analysed the cytopathology caused by the two closely related viruses in the commonly used Vero E6 cell line. Compared to SARS-CoV, SARS-CoV-2 generated higher levels of intracellular viral RNA, but strikingly about 50-fold less infectious viral progeny was recovered from the culture medium. Immunofluorescence microscopy of SARS-CoV-2-infected cells established extensive cross-reactivity of antisera previously raised against a variety of non-structural proteins, membrane and nucleocapsid protein of SARS-CoV. Electron microscopy revealed that the ultrastructural changes induced by the two SARS viruses are very similar and occur within comparable time frames after infection. Furthermore, we determined that the sensitivity of the two viruses to three established inhibitors of coronavirus replication (remdesivir, alisporivir and chloroquine) is very similar, but that SARS-CoV-2 infection was substantially more sensitive to pre-treatment of cells with pegylated interferon alpha. An important difference between the two viruses is the fact that – upon passaging in Vero E6 cells – SARS-CoV-2 apparently is under strong selection pressure to acquire adaptive mutations in its spike protein gene. These mutations change or delete a putative furin-like cleavage site in the region connecting the S1 and S2 domains and result in a very prominent phenotypic change in plaque assays.
-
-
-
Epidemiological and clinical characteristics of coronavirus disease (COVID-19) cases at a screening clinic during the early outbreak period: a single-centre study
More LessIntroduction. Coronavirus disease 2019 (COVID-19) is an infectious disease caused by Severe Acute Respiratory Corona Virus-2 (SARS-CoV-2). The disease was first identified in December 2019 in Wuhan, the capital of China's Hubei province, and has since spread globally, resulting in the ongoing 2019–2020 corona virus pandemic. SARS-CoV-2 is closely related to the original SARS-CoV. It is thought to have a zoonotic origin. The virus is primarily spread between people during close contact, often via small droplets produced by coughing, sneezing or talking. People may also become infected by touching a contaminated surface and then touching their face. COVID-19 patients currently remain the primary source of infection. An epidemiological survey indicated that the general population is susceptible to SARS-CoV-2. The spectrum of this disease ranges from mild to life-threatening. Fever is the most common symptom, although older people and those with comorbidities may experience fever later in the disease. Other common symptoms include cough, loss of appetite, fatigue, shortness of breath, sputum production, and muscle and joint pains. Symptoms such as nausea, vomiting and diarrhea have been observed in varying percentages. Some cases might progress promptly to acute respiratory distress syndrome (ARDS) and/or multiple organ function failure. Asymptomatic carriers and those in the incubation period may also be infectious.
Aim. To determine the epidemiological and clinical characteristics of patients presenting with COVID-19 at the screening clinic of a tertiary care hospital in Peshawar, Pakistan.
Methodology. In this descriptive study, we analysed data of patients presenting to a newly established Covid-19 screening clinic in Rehman Medical Institute. Anyone who reported with new onset fever and/or cough was tested for SARS-CoV-2 in the screening clinic. We documented and analysed demographic, epidemiological and clinical characteristics, which included age, sex, travel history, clinical features, comorbidities and laboratory data of patients confirmed by real-time reverse-transcription (RT)-PCR at Rehman Medical Institute, Peshawar, Pakistan from 15 March till 21 April 2020. Paired specimens of throat swabs and nasal swabs were obtained from 845 patients, ribonucleic acid (RNA) was extracted and tested for SARS-CoV-2 by the RT-PCR assay.
Results. A total of 845 specimens were taken as described above. The positive rate for SARS-CoV-2 was about 14.3%. Male and older population had a significantly higher positive rate. Of the 121 patients infected with SARS-CoV-2, the mean age was 43.19 years (sd, 17.57) and the infections were more frequent among male gender accounting for 85 (70.25 %) patients. Common symptoms included fever (88 patients, 72 %), cough (72 patients, 59.5 %) and shortness of breath (69 patients, 57 %). Twenty-two (18 %) patients had recent travel history outside Pakistan in the previous 14 days, the majority of whom had returned back from Saudi Arabia.
Conclusion. In this single-centre, prospective, descriptive study, fever, cough and shortness of breath were the most common symptoms. Old age (>50 years), chronic underlying comorbidities and travel history may be risk factors. Therefore, we concluded that viral nucleic acid amplification tests (NAAT) played an important role in identifying SARS-CoV-2 infection in a screening clinic, which helped with isolation and cohorting of these patients.
-
-
-
The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection
More LessSARS-CoV-2 is a novel coronavirus that is the causative agent of coronavirus infectious disease 2019 (COVID-19). As of 17 April 2020, it has infected 2 114 269 people, resulting in 145 144 deaths. The timing, magnitude and longevity of humoral immunity is not yet understood for SARS-CoV-2. Nevertheless, understanding this is urgently required to inform the likely future dynamics of the pandemic, to guide strategies to allow relaxation of social distancing measures and to understand how to deploy limiting vaccine doses when they become available to achieve maximum impact. SARS-CoV-2 is the seventh human coronavirus to be described. Four human coronaviruses circulate seasonally and cause common colds. Two other coronaviruses, SARS and MERS, have crossed from animal sources into humans but have not become endemic. Here we review what is known about the human humoral immune response to epidemic SARS CoV and MERS CoV and to the seasonal, endemic coronaviruses. Then we summarize recent, mostly non-peer reviewed, studies into SARS-CoV-2 serology and reinfection in humans and non-human primates and summarize current pressing research needs.
-
-
-
Dynamic linkage of COVID-19 test results between Public Health England’s Second Generation Surveillance System and UK Biobank
UK Biobank (UKB) is an international health resource enabling research into the genetic and lifestyle determinants of common diseases of middle and older age. It comprises 500 000 participants. Public Health England’s Second Generation Surveillance System is a centralized microbiology database covering English clinical diagnostics laboratories that provides national surveillance of legally notifiable infections, bacterial isolations and antimicrobial resistance. We previously developed secure, pseudonymized, individual-level linkage of these systems. In this study, we implemented rapid dynamic linkage, which allows us to provide a regular feed of new COVID-19 (SARS-CoV-2) test results to UKB to facilitate rapid and urgent research into the epidemiological and human genetic risk factors for severe infection in the cohort. Here, we have characterized the first 1352 cases of COVID-19 in UKB participants, of whom 895 met our working definition of severe COVID-19 as inpatients hospitalized on or after 16 March 2020. We found that the incidence of severe COVID-19 among UKB cases was 27.4 % lower than the general population in England, although this difference varied significantly by age and sex. The total number of UKB cases could be estimated as 0.6 % of the publicly announced number of cases in England. We considered how increasing case numbers will affect the power of genome-wide association studies. This new dynamic linkage system has further potential to facilitate the investigation of other infections and the prospective collection of microbiological cultures to create a microbiological biobank (bugbank) for studying the interaction of environment, human and microbial genetics on infection in the UKB cohort.
-