Coronaviruses

Coronaviruses are a large family of viruses that can infect a range of hosts. They are known to cause diseases including the common cold, Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in humans.
In January 2020, China saw an outbreak of a new coronavirus strain now named SARS-CoV-2. Although the animal reservoir for the SARS and MERS viruses are known, this has yet to have been confirmed for SARS-CoV-2. All three strains are transmissible between humans.
To allow the widest possible distribution of relevant research, the Microbiology Society has brought together articles from across our portfolio and made this content freely available.
Image credit: "MERS-CoV" by NIAID is licensed under CC BY 2.0, this image has been modified.
Collection Contents
81 - 100 of 298 results
-
-
Pandemic planning: plotting a course through the coronawars
More LessThe biological motor behind the current coronavirus pandemic has placed microbiology on a global stage, and given its practitioners a role among the architects of recovery. Planning for a return to normality or the new normal is a complex, multi-agency task for which healthcare scientists may not be prepared. This paper introduces a widely used military planning framework known as the Joint Military Appreciation Process, and outlines how it can be applied to deal with the next phase of the COVID-19 pandemic. Recognition of SARS-CoV-2's critical attributes, targetable vulnerabilities, and its most likely and most dangerous effects is a necessary precursor to scoping, framing and mission analysis. From this flows course of action development, analysis, concept of operations development, and an eventual decision to act on the plan. The same planning technique is applicable to the larger scale task of setting a microbiology-centric plan in the broader context of social and economic recovery.
-
-
-
Prolonged viral shedding and new mutations of COVID-19 could complicate the control of the pandemic
More LessThe studies of coronavirus disease 2019 (COVID-19) have mainly focused on epidemiological and clinical features of patients, but transmission dynamics of SARS-CoV-2 virus after patients have recovered is still poorly understood. Here we report a case with prolonged viral shedding of COVID-19 in Kaohsiung, Taiwan. This patient started to show myalgia and malaise in Wuhan, and the onset of the fever was on days 7–14 of the illness. All clinical and radiological results returned to normal after day 26, however, viral shedding was still evident 14 days later. Sequence analysis of the genome of the Taiwanese SARS-CoV-2 isolate from this patient reveals new mutations in viral replicase and ORF3a, indicating that COVID-19 evolves very quickly. Prolonged viral shedding and new mutations in the viral genome could potentially complicate the control of the COVID-19 pandemic.
-
-
-
N-glycosylation of infectious bronchitis virus M41 spike determines receptor specificity
Infection of chicken coronavirus infectious bronchitis virus (IBV) is initiated by binding of the viral heavily N-glycosylated attachment protein spike to the alpha-2,3-linked sialic acid receptor Neu5Ac. Previously, we have shown that N-glycosylation of recombinantly expressed receptor binding domain (RBD) of the spike of IBV-M41 is of critical importance for binding to chicken trachea tissue. Here we investigated the role of N-glycosylation of the RBD on receptor specificity and virus replication in the context of the virus particle. Using our reverse genetics system we were able to generate recombinant IBVs for nine-out-of-ten individual N-glycosylation mutants. In vitro growth kinetics of these viruses were comparable to the virus containing the wild-type M41-S1. Furthermore, Neu5Ac binding by the recombinant viruses containing single N-glycosylation site knock-out mutations matched the Neu5Ac binding observed with the recombinant RBDs. Five N-glycosylation mutants lost the ability to bind Neu5Ac and gained binding to a different, yet unknown, sialylated glycan receptor on host cells. These results demonstrate that N-glycosylation of IBV is a determinant for receptor specificity.
-
-
-
Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2
More LessIntroduction. The emergence of SARS-CoV-2 has taken humanity off guard. Following an outbreak of SARS-CoV in 2002, and MERS-CoV about 10 years later, SARS-CoV-2 is the third coronavirus in less than 20 years to cross the species barrier and start spreading by human-to-human transmission. It is the most infectious of the three, currently causing the COVID-19 pandemic. No treatment has been approved for COVID-19. We previously proposed targets that can serve as binding sites for antiviral drugs for multiple coronaviruses, and here we set out to find current drugs that can be repurposed as COVID-19 therapeutics.
Aim. To identify drugs against COVID-19, we performed an in silico virtual screen with the US Food and Drug Administration (FDA)-approved drugs targeting the RNA-dependent RNA polymerase (RdRP), a critical enzyme for coronavirus replication.
Methodology. Initially, no RdRP structure of SARS-CoV-2 was available. We performed basic sequence and structural analysis to determine if RdRP from SARS-CoV was a suitable replacement. We performed molecular dynamics simulations to generate multiple starting conformations that were used for the in silico virtual screen. During this work, a structure of RdRP from SARS-CoV-2 became available and was also included in the in silico virtual screen.
Results. The virtual screen identified several drugs predicted to bind in the conserved RNA tunnel of RdRP, where many of the proposed targets were located. Among these candidates, quinupristin is particularly interesting because it is expected to bind across the RNA tunnel, blocking access from both sides and suggesting that it has the potential to arrest viral replication by preventing viral RNA synthesis. Quinupristin is an antibiotic that has been in clinical use for two decades and is known to cause relatively minor side effects.
Conclusion. Quinupristin represents a potential anti-SARS-CoV-2 therapeutic. At present, we have no evidence that this drug is effective against SARS-CoV-2 but expect that the biomedical community will expeditiously follow up on our in silico findings.
-
-
-
Logic in the time of coronavirus
More LessMuch has happened here since the local news media trumpeted the first Australian COVID-19 fatality, and stirred up a medieval fear of contagion. We now need to take a step back to examine the logic underlying the use of our limited COVID-19 countermeasures. Emerging infectious diseases by their nature, pose new challenges to the diagnostic-treatment-control nexus, and push our concepts of causality beyond the limits of the conventional Koch-Henle approach to aetiology. We need to use contemporary methods of assessing causality to ensure that clinical, laboratory and public health measures draw on a rational, evidence-based approach to argumentation. The purpose of any aetiological hypothesis is to derive actionable insights into this latest emerging infectious disease. This review is an introduction to a conversation with medical microbiologists, which will be supported by a moderated blog.
-
-
-
Isolation and growth characterization of novel full length and deletion mutant human MERS-CoV strains from clinical specimens collected during 2015
Azaibi Tamin, Krista Queen, Clinton R. Paden, Xiaoyan Lu, Erica Andres, Senthilkumar K. Sakthivel, Yan Li, Ying Tao, Jing Zhang, Shifaq Kamili, Abdullah M. Assiri, Ali Alshareef, Taghreed A. Alaifan, Asmaa M. Altamimi, Hani Jokhdar, John T. Watson, Susan I. Gerber, Suxiang Tong and Natalie J. ThornburgMiddle East respiratory syndrome (MERS) is a viral respiratory illness first reported in Saudi Arabia in September 2012 caused by the human coronavirus (CoV), MERS-CoV. Using full-genome sequencing and phylogenetic analysis, scientists have identified three clades and multiple lineages of MERS-CoV in humans and the zoonotic host, dromedary camels. In this study, we have characterized eight MERS-CoV isolates collected from patients in Saudi Arabia in 2015. We have performed full-genome sequencing on the viral isolates, and compared them to the corresponding clinical specimens. All isolates were clade B, lineages 4 and 5. Three of the isolates carry deletions located on three independent regions of the genome in the 5′UTR, ORF1a and ORF3. All novel MERS-CoV strains replicated efficiently in Vero and Huh7 cells. Viruses with deletions in the 5′UTR and ORF1a exhibited impaired viral release in Vero cells. These data emphasize the plasticity of the MERS-CoV genome during human infection.
-
-
-
Middle East respiratory coronavirus (MERS-CoV) spike (S) protein vesicular stomatitis virus pseudoparticle neutralization assays offer a reliable alternative to the conventional neutralization assay in human seroepidemiological studies
Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel zoonotic coronavirus that was identified in 2012. MERS-CoV infection in humans can result in an acute, severe respiratory disease and in some cases multi-organ failure; the global mortality rate is approximately 35 %. The MERS-CoV spike (S) protein is a major target for neutralizing antibodies in infected patients. The MERS-CoV microneutralization test (MNt) is the gold standard method for demonstrating prior infection. However, this method requires the use of live MERS-CoV in biosafety level 3 (BSL-3) containment. The present work describes the generation and validation of S protein-bearing vesicular stomatitis virus (VSV) pseudotype particles (VSV-MERS-CoV-S) in which the VSV glycoprotein G gene has been replaced by the luciferase reporter gene, followed by the establishment of a pseudoparticle-based neutralization test to detect MERS-CoV neutralizing antibodies under BSL-2 conditions. Using a panel of human sera from confirmed MERS-CoV patients, the VSV-MERS-CoV particle neutralization assay produced results that were highly comparable to those of the microneutralization test using live MERS-CoV. The results suggest that the VSV-MERS-CoV-S pseudotype neutralization assay offers a highly specific, sensitive and safer alternative method to detect MERS-CoV neutralizing antibodies in human sera.
-
-
-
Detection and characterization of a novel bat-borne coronavirus in Singapore using multiple molecular approaches
Bats are important reservoirs and vectors in the transmission of emerging infectious diseases. Many highly pathogenic viruses such as SARS-CoV and rabies-related lyssaviruses have crossed species barriers to infect humans and other animals. In this study we monitored the major roost sites of bats in Singapore, and performed surveillance for zoonotic pathogens in these bats. Screening of guano samples collected during the survey uncovered a bat coronavirus (Betacoronavirus) in Cynopterus brachyotis, commonly known as the lesser dog-faced fruit bat. Using a capture-enrichment sequencing platform, the full-length genome of the bat CoV was sequenced and found to be closely related to the bat coronavirus HKU9 species found in Leschenault’s rousette discovered in the Guangdong and Yunnan provinces.
-
-
-
Identification of peptide domains involved in the subcellular localization of the feline coronavirus 3b protein
More LessFeline coronavirus (FCoV) has been identified as the aetiological agent of feline infectious peritonitis (FIP), a highly fatal systemic disease in cats. FCoV open reading frame 3 (ORF3) encodes accessory proteins 3a, 3b and 3 c. The FCoV 3b accessory protein consists of 72 amino acid residues and localizes to nucleoli and mitochondria. The present work focused on peptide domains within FCoV 3b that drive its intracellular trafficking. Transfection of different cell types with FCoV 3b fused to enhanced green fluorescent protein (EGFP) or 3×FLAG confirmed localization of FCoV 3b in the mitochondria and nucleoli. Using serial truncated mutants, we showed that nucleolar accumulation is controlled by a joint nucleolar and nuclear localization signal (NoLS/NLS) in which the identified overlapping pat4 motifs (residues 53–57) play a critical role. Mutational analysis also revealed that mitochondrial translocation is mediated by N-terminal residues 10–35, in which a Tom20 recognition motif (residues 13–17) and two other overlapping hexamers (residues 24–30) associated with mitochondrial targeting were identified. In addition, a second Tom20 recognition motif was identified further downstream (residues 61–65), although the mitochondrial translocation evoked by these residues seemed less efficient as a diffuse cytoplasmic distribution was also observed. Assessing the spatiotemporal distribution of FCoV 3b did not provide convincing evidence of dynamic shuttling behaviour between the nucleoli and the mitochondria.
-
-
-
First detection of bovine coronavirus in Yak (Bos grunniens) and a bovine coronavirus genome with a recombinant HE gene
Qifu He, Zijing Guo, Bin Zhang, Hua Yue and Cheng TangThe yak (Bosgrunniens) is a unique domestic bovine species that plays an indispensable role for herdsmen in the Qinghai–Tibet Plateau. Here, 336 diarrhoeic samples were collected from yaks on 29 farms in the Qinghai–Tibet Plateau from 2015 to 2017. Approximately 69.05 % (232/336) of the diarrhoeic samples were assessed as bovine coronavirus (BCoV)-positive by RT-PCR assay, and most of the detected strains showed a unique evolution based on 40 spike (S), nucleocapsid (N) and haemagglutinin-esterase (HE) gene fragments. Notably, the 12 complete S genes detected shared 1 identical amino acid mutation (E121V) in the S1 subunit compared with the other 150 complete S genes in the GenBank database. Furthermore, a BCoV strain (designated YAK/HY24/CH/2017) was isolated from one diarrhoeic sample (virus titre : 108.17TCID50 ml−1), and a phylogenetic analysis based on complete genome sequences revealed that strain YAK/HY24/CH/2017 has the closest genetic relationship with the BCoV prototype strain Mebus. Interestingly, 2 significant characteristics were observed in the genome of strain YAK/HY24/CH/2017 : (1) the strain had 26 unique amino acid variations in the S gene compared with the other 150 BCoV S genes in the GenBank database and (2) a recombination event was identified between the esterase and lectin domains of the HE gene. In conclusion, this study revealed the high prevalence of BCoV in yaks in the Qinghai–Tibet Plateau. To the best of our knowledge, this is the first description of the molecular prevalence of BCoV in yaks and of a BCoV genome with an HE gene recombination.
-
-
-
Characterization of intestinal Escherichia coli isolated from calves with diarrhea due to rotavirus and coronavirus
Purpose. To address more information about changes in commensal Escherichia coli during virus intestinal infection, we characterized 30 faecal E. coli isolates from calves (21 to 60 days old) with diarrhea due to rotavirus and coronavirus, which received, before diagnosis, tetracycline, gentamicin and enrofloxacin drugs.
Methodology. Clermont’s phylogenetic classification; presence of genes for curli, cellulose, fimbriae (F4, F5, F6, F18, F41); and antimicrobial susceptibility were used to characterize the isolates. Disk diffusion technique and PCR were used as methodologies.
Results. E. coli isolates from calves with diarrhea were phylogenetically classified as B1 (70%, 21/30), B2 (3.33%, 1/30), C (3.33%, 1/30), D (3.33%, 1/30), E (13.33%, 4/30) and unknown (6.7 %; 2/30), whereas E. coli isolates from the control group were classified only as B1 (83.3%, 25/30), E (10 %; 3/30) and unknown (6,7 %; 2/30). E. coli isolates from calves with diarrhea showed a much higher resistance profile with 16 (53.3%) multiresistant isolates. Only isolates (30%-9/30) from diarrheic calves were also positive for fimbriae, specifically 16.7% (5/30) for F5 and 13.3% (4/30) for F18.
Conclusion. To sum up, E. coli isolates from calves with diarrhea showed differences in relation to the control group, confirming changes in commensal E. coli during virus intestinal infection. It can be emphasized that some care should be taken to manage diarrheic calves: the pathological agent must be diagnosed prior to treatment; antibacterial treatment should be with antimicrobials with a different mechanism of action; and finally, treated animals should be maintained separately from others because they can carry micro-organisms with a resistant profile.
-
-
-
Generation of recombinant avian coronaviruses indicates the S gene is a factor in pathogenicity
More LessThe avian coronavirus infectious bronchitis virus (IBV) is the most economically important disease of chickens in the UK, causing significant losses as a result of poor weight gain and reduced egg quality in infected birds. IBV expresses a large spike (S) glycoprotein on the surface of the virion which is responsible for attachment to host cells and is the main antigenic target for neutralising antibodies during infection. Previous work has also demonstrated that the S protein determines cell tropism in vitro. In order to investigate the involvement of the S gene in IBV pathogenesis and explore the potential for vaccine propagation in cell culture, recombinant viruses were generated using vaccinia virus based reverse genetics. Two isolates of the pathogenic M41 strain were mutated to include the S gene from a non-pathogenic lab strain with extended tropism (Beau-R) or a heterologous pathogenic field strain with restricted tropism (4/91), resulting in two recombinant IBVs termed M41K-BeauR(S) and M41K-4/91(S), respectively. These viruses were characterised in vitro and in vivo to determine the involvement of the S gene in IBV replication and pathogenicity. M41K-BeauR(S) was attenuated in vivo but exhibited the extended host tropism of the S donor strain. M41K-4/91(S) remained pathogenic and also adopted the restricted in vitro tropism of 4/91. This indicates that the S gene not only determines the cellular tropism of the virus but also plays a key role during in vivo infections, and that replacing the ectodomain of IBV S can significantly alter the pathogenicity of the resulting virus.
-
-
-
Recombinant infectious bronchitis viruses expressing heterologous S1 subunits: potential for a new generation of vaccines that replicate in Vero cells
More LessThe spike glycoprotein (S) of infectious bronchitis virus (IBV) comprises two subunits, S1 and S2. We have previously demonstrated that the S2 subunit of the avirulent Beau-R strain is responsible for its extended cellular tropism for Vero cells. Two recombinant infectious bronchitis viruses (rIBVs) have been generated; the immunogenic S1 subunit is derived from the IBV vaccine strain, H120, or the virulent field strain, QX, within the genetic background of Beau-R. The rIBVs BeauR-H120(S1) and BeauR-QX(S1) are capable of replicating in primary chicken kidney cell cultures and in Vero cells. These results demonstrate that rIBVs are able to express S1 subunits from genetically diverse strains of IBV, which will enable the rational design of a future generation of IBV vaccines that may be grown in Vero cells.
-
-
-
Deletion of accessory genes 3a, 3b, 5a or 5b from avian coronavirus infectious bronchitis virus induces an attenuated phenotype both in vitro and in vivo
Avian coronavirus infectious bronchitis virus (IBV) infects domestic fowl, resulting in respiratory disease and causing serious losses in unprotected birds. Its control is mainly achieved by using live attenuated vaccines. Here we explored the possibilities for rationally attenuating IBV to improve our knowledge regarding the function of IBV accessory proteins and for the development of next-generation vaccines with the recently established reverse genetic system for IBV H52 based on targeted RNA recombination and selection of recombinant viruses in embryonated eggs. To this aim, we selectively removed accessory genes 3a, 3b, 5a and 5b individually, and rescued the resulting recombinant (r) rIBV-Δ3a, rIBV-Δ3b, rIBV-Δ5a and rIBV-Δ5b. In vitro inoculation of chicken embryo kidney cells with recombinant and wild-type viruses demonstrated that the accessory protein 5b is involved in the delayed activation of the interferon response of the host after IBV infection. Embryo mortality after the inoculation of 8-day-old embryonated chicken eggs with recombinant and wild-type viruses showed that rIBV-Δ3b, rIBV-Δ5a and rIBV-Δ5b had an attenuated phenotype in ovo, with reduced titres at 6 h p.i. and 12 h p.i. for all viruses, while growing to the same titre as wild-type rIBV at 48 h p.i. When administered to 1-day-old chickens, rIBV-Δ3a, rIBV-Δ3b, rIBV-Δ5a and rIBV-Δ5b showed reduced ciliostasis in comparison to the wild-type viruses. In conclusion, individual deletion of accessory genes in IBV H52 resulted in mutant viruses with an attenuated phenotype.
-
-
-
The ADRP domain from a virulent strain of infectious bronchitis virus is not sufficient to confer a pathogenic phenotype to the attenuated Beaudette strain
More LessThe replicase gene of the coronavirus infectious bronchitis virus (IBV) encodes 15 non-structural proteins (nsps). Nsp 3 is a multi-functional protein containing a conserved ADP-ribose-1″-phosphatase (ADRP) domain. The crystal structures of the domain from two strains of IBV, M41 (virulent) and Beaudette (avirulent), identified a key difference; M41 contains a conserved triple-glycine motif, whilst Beaudette contains a glycine-to-serine mutation that is predicted to abolish ADRP activity. Although ADRP activity has not been formally demonstrated for IBV nsp 3, Beaudette fails to bind ADP-ribose. The role of ADRP in virulence was investigated by generating rIBVs, based on Beaudette, containing either a restored triple-glycine motif or the complete M41 ADRP domain. Replication in vitro was unaffected by the ADRP modifications and the in vivo phenotype of the rIBVs was found to be apathogenic, indicating that restoration of the triple-glycine motif is not sufficient to restore virulence to the apathogenic Beaudette strain.
-
-
-
Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors
More LessEnveloped viruses gain entry into host cells by fusing with cellular membranes, a step that is required for virus replication. Coronaviruses, including the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and infectious bronchitis virus (IBV), fuse at the plasma membrane or use receptor-mediated endocytosis and fuse with endosomes, depending on the cell or tissue type. The virus spike (S) protein mediates fusion with the host cell membrane. We have shown previously that an Abelson (Abl) kinase inhibitor, imatinib, significantly reduces SARS-CoV and MERS-CoV viral titres and prevents endosomal entry by HIV SARS S and MERS S pseudotyped virions. SARS-CoV and MERS-CoV are classified as BSL-3 viruses, which makes experimentation into the cellular mechanisms involved in infection more challenging. Here, we use IBV, a BSL-2 virus, as a model for studying the role of Abl kinase activity during coronavirus infection. We found that imatinib and two specific Abl kinase inhibitors, GNF2 and GNF5, reduce IBV titres by blocking the first round of virus infection. Additionally, all three drugs prevented IBV S-induced syncytia formation prior to the hemifusion step. Our results indicate that membrane fusion (both virus–cell and cell–cell) is blocked in the presence of Abl kinase inhibitors. Studying the effects of Abl kinase inhibitors on IBV will be useful in identifying the host cell pathways required for coronavirus infection. This will provide an insight into possible therapeutic targets to treat infections by current as well as newly emerging coronaviruses.
-
-
-
Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing Red-mediated recombination cloning
Middle East respiratory syndrome coronavirus (MERS-CoV) is a high-priority pathogen in pandemic preparedness research. Reverse genetics systems are a valuable tool to study viral replication and pathogenesis, design attenuated vaccines and create defined viral assay systems for applications such as antiviral screening. Here we present a novel reverse genetics system for MERS-CoV that involves maintenance of the full-length viral genome as a cDNA copy inserted in a bacterial artificial chromosome amenable to manipulation by homologue recombination, based on the bacteriophage λ Red recombination system. Based on a full-length infectious MERS-CoV cDNA clone, optimal genomic insertion sites and expression strategies for GFP were identified and used to generate a reporter MERS-CoV expressing GFP in addition to the complete set of viral proteins. GFP was genetically fused to the N-terminal part of protein 4a, from which it is released during translation via porcine teschovirus 2A peptide activity. The resulting reporter virus achieved titres nearly identical to the wild-type virus 48 h after infection of Vero cells at m.o.i. 0.001 (1×105 p.f.u. ml−1 and 3×105 p.f.u. ml−1, respectively), and allowed determination of the 50 % inhibitory concentration for the known MERS-CoV inhibitor cyclosporine A based on fluorescence readout. The resulting value was 2.41 µM, which corresponds to values based on wild-type virus. The reverse genetics system described herein can be efficiently mutated by Red-mediated recombination. The GFP-expressing reporter virus contains the full set of MERS-CoV proteins and achieves wild-type titres in cell culture.
-
-
-
A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat
Bats are important reservoir hosts for emerging viruses, including coronaviruses that cause diseases in people. Although there have been several studies on the pathogenesis of coronaviruses in humans and surrogate animals, there is little information on the interactions of these viruses with their natural bat hosts. We detected a coronavirus in the intestines of 53/174 hibernating little brown bats (Myotis lucifugus), as well as in the lungs of some of these individuals. Interestingly, the presence of the virus was not accompanied by overt inflammation. Viral RNA amplified from little brown bats in this study appeared to be from two distinct clades. The sequences in clade 1 were very similar to the archived sequence derived from little brown bats and the sequences from clade 2 were more closely related to the archived sequence from big brown bats. This suggests that two closely related coronaviruses may circulate in little brown bats. Sequence variation among coronavirus detected from individual bats suggested that infection occurred prior to hibernation, and that the virus persisted for up to 4 months of hibernation in the laboratory. Based on the sequence of its genome, the coronavirus was placed in the Alphacoronavirus genus, along with some human coronaviruses, bat viruses and the porcine epidemic diarrhoea virus. The detection and identification of an apparently persistent coronavirus in a local bat species creates opportunities to understand the dynamics of coronavirus circulation in bat populations.
-
-
-
A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective
More LessThere have been 2040 laboratory-confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) in 27 countries, with a mortality rate of 34.9 %. There is no specific therapy. The current therapies have mainly been adapted from severe acute respiratory syndrome (SARS-CoV) treatments, including broad-spectrum antibiotics, corticosteroids, interferons, ribavirin, lopinavir–ritonavir or mycophenolate mofetil, and have not been subject to well-organized clinical trials. The development of specific therapies and vaccines is therefore urgently required. We examine existing and potential therapies and vaccines from a molecular perspective. These include viral S protein targeting; inhibitors of host proteases, including TMPRSS2, cathepsin L and furin protease, and of viral M(pro) and the PL(pro) proteases; convalescent plasma; and vaccine candidates. The Medline database was searched using combinations and variations of terms, including ‘Middle East respiratory syndrome coronavirus’, ‘MERS-CoV’, ‘SARS’, ‘therapy’, ‘molecular’, ‘vaccine’, ‘prophylactic’, ‘S protein’, ‘DPP4’, ‘heptad repeat’, ‘protease’, ‘inhibitor’, ‘anti-viral’, ‘broad-spectrum’, ‘interferon’, ‘convalescent plasma’, ‘lopinavir ritonavir’, ‘antibodies’, ‘antiviral peptides’ and ‘live attenuated viruses’. There are many options for the development of MERS-CoV-specific therapies. Currently, MERS-CoV is not considered to have pandemic potential. However, the high mortality rate and potential for mutations that could increase transmissibility give urgency to the search for direct, effective therapies. Well-designed and controlled clinical trials are needed, both for existing therapies and for prospective direct therapies.
-
-
-
Identification and characterization of a Golgi retention signal in feline coronavirus accessory protein 7b
Feline coronaviruses encode five accessory proteins with largely elusive functions. Here, one of these proteins, called 7b (206 residues), was investigated using a reverse genetic approach established for feline infectious peritonitis virus (FIPV) strain 79–1146. Recombinant FIPVs (rFPIVs) expressing mutant and/or FLAG-tagged forms of 7b were generated and used to investigate the expression, processing, glycosylation, localization and trafficking of the 7b protein in rFIPV-infected cells, focusing on a previously predicted ER retention signal, KTEL, at the C-terminus of 7b. The study revealed that 7b is N-terminally processed by a cellular signalase. The cleavage site, 17-Ala|Thr-18, was unambiguously identified by N-terminal sequence analysis of a 7b processing product purified from rFIPV-infected cells. Based on this information, rFIPVs expressing FLAG-tagged 7b proteins were generated and the effects of substitutions in the C-terminal 202KTEL206 sequence were investigated. The data show that (i) 7b localizes to and is retained in the medial- and/or trans-Golgi compartment, (ii) the C-terminal KTEL sequence acts as a Golgi [rather than an endoplasmic reticulum (ER)] retention signal, (iii) minor changes in the KTEL motif (such as KTE, KTEV, or the addition of a C-terminal tag) abolish Golgi retention, resulting in relocalization and secretion of 7b, and (iv) a KTEL-to-KDEL replacement causes retention of 7b in the ER of rFIPV-infected feline cells. Taken together, this study provides interesting new insights into an efficient Golgi retention signal that controls the cellular localization and trafficking of the FIPV 7b protein in virus-infected feline cells.
-