Coronaviruses

Coronaviruses are a large family of viruses that can infect a range of hosts. They are known to cause diseases including the common cold, Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in humans.
In January 2020, China saw an outbreak of a new coronavirus strain now named SARS-CoV-2. Although the animal reservoir for the SARS and MERS viruses are known, this has yet to have been confirmed for SARS-CoV-2. All three strains are transmissible between humans.
To allow the widest possible distribution of relevant research, the Microbiology Society has brought together articles from across our portfolio and made this content freely available.
Image credit: "MERS-CoV" by NIAID is licensed under CC BY 2.0, this image has been modified.
Collection Contents
41 - 60 of 298 results
-
-
Validation of saliva sampling as an alternative to oro-nasopharyngeal swab for detection of SARS-CoV-2 using unextracted rRT-PCR with the Allplex 2019-nCoV assay
Introduction. The current severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) pandemic has stressed the global supply chain for specialized equipment, including flocked swabs.
Hypothesis. Saliva could be a potential alternative specimen source for diagnosis of SARS-CoV-2 infection by reverse-transcriptase PCR (RT-PCR).
Aim. To compare the detection efficiency of SARS-CoV-2 RNA in saliva and oro-nasopharyngeal swab (ONPS) specimens.
Methodology. Patients recruited from hospital provided paired saliva and ONPS specimens. We performed manual or automated RT-PCR with prior proteinase K treatment without RNA extraction using the Seegene Allplex 2019 nCoV assay.
Results. Of the 773 specimen pairs, 165 (21.3 %) had at least one positive sample. Additionally, 138 specimens tested positive by both sampling methods. Fifteen and 12 cases were detected only by nasopharyngeal swab and saliva, respectively. The sensitivity of ONPS (153/165; 92.7 %; 95 % CI: 88.8–96.7) was similar to that of saliva (150/165; 90.9 %; 95 % CI: 86.5–95.3; P=0.5). In patients with symptoms for ≤ 10 days, the sensitivity of ONPS (118/126; 93.7 %; 95 % CI: 89.4–97.9) was similar to that of saliva (122/126; 96.8 %; 95 % CI: 93.8–99.9 %; P=0.9). However, the sensitivity of ONPS (20/22; 95.2 %; 95 % CI: 86.1–100) was higher than that of saliva (16/22; 71.4 %; 95 % CI: 52.1–90.8) in patients with symptoms for more than 10 days.
Conclusions. Saliva sampling is an acceptable alternative to ONPS for diagnosing SARS-CoV-2 infection in symptomatic individuals displaying symptoms for ≤ 10 days. These results reinforce the need to expand the use of saliva samples, which are self-collected and do not require swabs.
-
-
-
Combined computational and cellular screening identifies synergistic inhibition of SARS-CoV-2 by lenvatinib and remdesivir
Rapid repurposing of existing drugs as new therapeutics for COVID-19 has been an important strategy in the management of disease severity during the ongoing SARS-CoV-2 pandemic. Here, we used high-throughput docking to screen 6000 compounds within the DrugBank library for their potential to bind and inhibit the SARS-CoV-2 3 CL main protease, a chymotrypsin-like enzyme that is essential for viral replication. For 19 candidate hits, parallel in vitro fluorescence-based protease-inhibition assays and Vero-CCL81 cell-based SARS-CoV-2 replication-inhibition assays were performed. One hit, diclazuril (an investigational anti-protozoal compound), was validated as a SARS-CoV-2 3 CL main protease inhibitor in vitro (IC50 value of 29 µM) and modestly inhibited SARS-CoV-2 replication in Vero-CCL81 cells. Another hit, lenvatinib (approved for use in humans as an anti-cancer treatment), could not be validated as a SARS-CoV-2 3 CL main protease inhibitor in vitro, but serendipitously exhibited a striking functional synergy with the approved nucleoside analogue remdesivir to inhibit SARS-CoV-2 replication, albeit this was specific to Vero-CCL81 cells. Lenvatinib is a broadly-acting host receptor tyrosine kinase (RTK) inhibitor, but the synergistic effect with remdesivir was not observed with other approved RTK inhibitors (such as pazopanib or sunitinib), suggesting that the mechanism-of-action is independent of host RTKs. Furthermore, time-of-addition studies revealed that lenvatinib/remdesivir synergy probably targets SARS-CoV-2 replication subsequent to host-cell entry. Our work shows that combining computational and cellular screening is a means to identify existing drugs with repurposing potential as antiviral compounds. Future studies could be aimed at understanding and optimizing the lenvatinib/remdesivir synergistic mechanism as a therapeutic option.
-
-
-
Acceptable performance of the Abbott ID NOW among symptomatic individuals with confirmed COVID-19
Introduction. The ID NOW is FDA approved for the detection of SARS-CoV-2 in symptomatic individuals within the first 7 days of symptom onset for COVID-19 if tested within 1 h of specimen collection.
Gap statement. Clinical data on the performance of the ID NOW are limited, with many studies varying in their study design and/or having small sample size.
Aim. In this study we aimed to determine the clinical performance of the ID NOW compared to conventional RT-PCR testing.
Methodology. Adults with COVID-19 in the community or hospital were recruited into the study. Paired throat swabs were collected, with one throat swab transported immediately in an empty sterile tube to the laboratory for ID NOW testing, and the other transported in universal transport media and tested by an in-house SARS-CoV-2 RT-PCR assay targeting the E gene.
Results. In total, 133 individuals were included in the study; 129 samples were positive on either the ID NOW and/or RT-PCR. Assuming any positive result on either assay represents a true positive, positive per cent agreement (PPA) of the ID NOW compared to RT-PCR with 95 % confidence intervals was 89.1 % (82.0–94.1%) and 91.6 % (85.1–95.9%), respectively. When analysing individuals with symptom duration ≤7 days and who had the ID NOW performed within 1 h (n=62), ID NOW PPA increased to 98.2 %.
Conclusion. Results from the ID NOW were reliable, especially when adhering to the manufacturer’s recommendations for testing.
-
-
-
Network pharmacology and molecular docking analysis on mechanisms of Tibetan Hongjingtian (Rhodiola crenulata) in the treatment of COVID-19
Introduction. Coronavirus disease 2019 (COVID-19) is a highly contagious disease and ravages the world.
Hypothesis/Gap Statement. We proposed that R. crenulata might have potential value in the treatment of COVID-19 patients by regulating the immune response and inhibiting cytokine storm.
Aim. We aimed to explore the potential molecular mechanism for Rhodiola crenulata (R. crenulata), against the immune regulation of COVID-19, and to provide a referenced candidate Tibetan herb (R. crenulata) to overcome COVID-19.
Methodology. Components and targets of R. crenulata were retrieved from the TCMSP database. GO analysis and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment were built by R bioconductor package to explore the potential biological effects for targets of R. crenulata. The R. crenulata-compound-target network, target pathway network and protein–protein interaction (PPI) network were constructed using Cytoscape 3.3.0. Autodock 4.2 and Discovery Studio software were applied for molecular docking.
Result. Four bioactive components (quercetin, kaempferol, kaempferol-3-O-α-l-rhamnoside and tamarixetin) and 159 potential targets of R. crenulata were identified from the TCMSP database. The result of GO annotation and KEGG-pathway-enrichment analyses showed that target genes of R. crenulata were associated with inflammatory response and immune-related signalling pathways, especially IL-17 signalling pathway, and TNF signalling pathway. Targets-pathway network and PPI network showed that IL-6, IL-1B and TNF-α were considered to be hub genes. Molecular docking showed that core compound (quercetin) had a certain affinity with IL-1β, IL-6 and TNF-α.
Conclusion. R. crenulata might play an anti-inflammatory and immunoregulatory role in the cytokine storm of COVID-19.
-
-
-
Genomic epidemiological analysis of SARS-CoV-2 household transmission
Family clusters have contributed significantly to the onward spread of SARS-CoV-2. However, the dynamics of viral transmission in this setting remain incompletely understood. We describe the clinical and viral-phylogenetic characteristics of a family cluster of SARS-CoV-2 infections with a high attack rate, and explore how whole-genome sequencing (WGS) can inform outbreak investigations in this context. In this cluster, the first symptomatic case was a 22-month-old infant who developed rhinorrhoea and sneezing 2 days prior to attending a family gathering. Subsequently, seven family members in attendance at this event were diagnosed with SARS-CoV-2 infections, including the infant described. WGS revealed indistinguishable SARS-CoV-2 genomes recovered from the adults at the gathering, which were closely related genetically to B.1 lineage viruses circulating in the local community. However, a divergent viral sub-lineage was recovered from the infant and another child, each harbouring a distinguishing spike substitution (N30S). This suggested that the infant was unlikely to be the primary case, despite displaying symptoms first, and additional analysis of her nasopharyngeal swab revealed a picornavirus co-infection to account for her early symptoms. Our findings demonstrate how WGS can elucidate the transmission dynamics of SARS-CoV-2 infections within household clusters and provide useful information to support outbreak investigations. Additionally, our description of SARS-CoV-2 viral lineages and notable variants circulating in Ireland to date provides an important genomic-epidemiological baseline in the context of vaccine introduction.
-
-
-
The value of repeat patient testing for SARS-CoV-2: real-world experience during the first wave
More LessIntroduction. Reports of false-negative quantitative reverse transcription PCR (RT-qPCR) results from patients with high clinical suspension for coronavirus disease 2019 (COVID-19), suggested that a negative result produced by a nucleic acid amplification assays (NAAs) did not always exclude the possibility of COVID-19 infection. Repeat testing has been used by clinicians as a strategy in an to attempt to improve laboratory diagnosis of COVID-19 and overcome false-negative results in particular.
Aim. To investigate whether repeat testing is helpful for overcoming false-negative results.
Methods. We retrospectively reviewed our experience with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing, focusing on the yield of repeat patient testing for improving SARS-CoV-2 detection by NAA.
Results. We found that the yield from using repeat testing to identify false-negative patients was low. When the first test produced a negative result, only 6 % of patients tested positive by the second test. The yield decreased to 1.7 and then 0 % after the third and fourth tests, respectively. When comparing the results produced by three assays, the Centers for Disease Control and Prevention (CDC) SARS CoV-2 RT-qPCR panel, Xpert Xpress CoV-2 and ID NOW COVID-19, the ID NOW assay was associated with the highest number of patients who tested negative initially but positive on repeat testing. The CDC SARS CoV-2 RT-qPCR panel produced the highest number of indeterminate results. Repeat testing resolved more than 90 % of indeterminate/invalid results.
Conclusions. The yield from using repeat testing to identify false-negative patients was low. Repeat testing was best used for resolving indeterminate/invalid results.
-
-
-
Retrospective screening of routine respiratory samples revealed undetected community transmission and missed intervention opportunities for SARS-CoV-2 in the United Kingdom
Joseph G. Chappell, Theocharis Tsoleridis, Gemma Clark, Louise Berry, Nadine Holmes, Christopher Moore, Matthew Carlile, Fei Sang, Bisrat J. Debebe, Victoria Wright, William L. Irving, Brian J. Thomson, Timothy C. J. Boswell, Iona Willingham, Amelia Joseph, Wendy Smith, Manjinder Khakh, Vicki M. Fleming, Michelle M. Lister, Hannah C. Howson-Wells, Edward C. Holmes, Matthew W. Loose, Jonathan K. Ball, C. Patrick McClure and on behalf of the COG-UK consortiumIn the early phases of the SARS coronavirus type 2 (SARS-CoV-2) pandemic, testing focused on individuals fitting a strict case definition involving a limited set of symptoms together with an identified epidemiological risk, such as contact with an infected individual or travel to a high-risk area. To assess whether this impaired our ability to detect and control early introductions of the virus into the UK, we PCR-tested archival specimens collected on admission to a large UK teaching hospital who retrospectively were identified as having a clinical presentation compatible with COVID-19. In addition, we screened available archival specimens submitted for respiratory virus diagnosis, and dating back to early January 2020, for the presence of SARS-CoV-2 RNA. Our data provides evidence for widespread community circulation of SARS-CoV-2 in early February 2020 and into March that was undetected at the time due to restrictive case definitions informing testing policy. Genome sequence data showed that many of these early cases were infected with a distinct lineage of the virus. Sequences obtained from the first officially recorded case in Nottinghamshire - a traveller returning from Daegu, South Korea – also clustered with these early UK sequences suggesting acquisition of the virus occurred in the UK and not Daegu. Analysis of a larger sample of sequences obtained in the Nottinghamshire area revealed multiple viral introductions, mainly in late February and through March. These data highlight the importance of timely and extensive community testing to prevent future widespread transmission of the virus.
-
-
-
Differential role of sphingomyelin in influenza virus, rhinovirus and SARS-CoV-2 infection of Calu-3 cells
Host cell lipids play a pivotal role in the pathogenesis of respiratory virus infection. However, a direct comparison of the lipidomic profile of influenza virus and rhinovirus infections is lacking. In this study, we first compared the lipid profile of influenza virus and rhinovirus infection in a bronchial epithelial cell line. Most lipid features were downregulated for both influenza virus and rhinovirus, especially for the sphingomyelin features. Pathway analysis showed that sphingolipid metabolism was the most perturbed pathway. Functional study showed that bacterial sphingomyelinase suppressed influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, but promoted rhinovirus replication. These findings suggest that sphingomyelin pathway can be a potential target for antiviral therapy, but should be carefully evaluated as it has opposite effects on different respiratory viruses. Furthermore, the differential effect of sphingomyelinase on rhinovirus and influenza virus may explain the interference between rhinovirus and influenza virus infection.
-
-
-
Human convalescent plasma protects K18-hACE2 mice against severe respiratory disease
SARS-CoV-2 is the causative agent of COVID-19 and human infections have resulted in a global health emergency. Small animal models that reproduce key elements of SARS-CoV-2 human infections are needed to rigorously screen candidate drugs to mitigate severe disease and prevent the spread of SARS-CoV-2. We and others have reported that transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the Keratin 18 (K18) promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge. Here we report that some infected mice that survive challenge have residual pulmonary damages and persistent brain infection on day 28 post-infection despite the presence of anti-SARS-COV-2 neutralizing antibodies. Because of the hypersensitivity of K18-hACE2 mice to SARS-CoV-2 and the propensity of virus to infect the brain, we sought to determine if anti-infective biologics could protect against disease in this model system. We demonstrate that anti-SARS-CoV-2 human convalescent plasma protects K18-hACE2 against severe disease. All control mice succumbed to disease by day 7; however, all treated mice survived infection without observable signs of disease. In marked contrast to control mice, viral antigen and lesions were reduced or absent from lungs and absent in brains of antibody-treated mice. Our findings support the use of K18-hACE2 mice for protective efficacy studies of anti-SARS-CoV-2 medical countermeasures (MCMs). They also support the use of this system to study SARS-CoV-2 persistence and host recovery.
-
-
-
SARS-CoV-2 replicon for high-throughput antiviral screening
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which is highly pathogenic and classified as a biosafety level 3 (BSL-3) agent, has greatly threatened global health and efficacious antivirals are urgently needed. The high requirement of facilities to manipulate the live virus has limited the development of antiviral study. Here, we constructed a reporter replicon of SARS-CoV-2, which can be handled in a BSL-2 laboratory. The Renilla luciferase activity effectively reflected the transcription and replication levels of the replicon genome. We identified the suitability of the replicon in antiviral screening using the known inhibitors, and thus established the replicon-based high-throughput screening (HTS) assay for SARS-CoV-2. The application of the HTS assay was further validated using a few hit natural compounds, which were screened out in a SARS-CoV-2 induced cytopathic-effect-based HTS assay in our previous study. This replicon-based HTS assay will be a safe platform for SARS-CoV-2 antiviral screening in a BSL-2 laboratory without the live virus.
-
-
-
Re-opening hairdressing salons, barber shops and gyms following COVID-19 lockdown: reducing risks from Legionella species through successful domestic steam disinfection of showerheads
More LessGiven the importance of disinfecting showerheads from Legionella species and the lack of instructions as to how to successfully achieve this, the aim of this study was to examine the ability of domestic steam disinfection to successfully disinfect showerheads from Legionella species. Steam disinfection of Legionella pneumophila [n=3; L. pneumophila serogroup 2–15 (wildtype environmental water isolate); L. pneumophila serogroup 1 NCTC11192 (reference strain); L. pneumophila serogroup 1 (wildtype environmental water isolate)], L. erythra (wildtype environmental water isolate) and L. bozemanii CRM11368M (reference strain) were examined in this study. Steam disinfection employing a baby bottle steam disinfector device eradicated all Legionella organisms tested. Steam disinfection, when performed properly under the manufacturer’s instructions, offers a relatively inexpensive, simple, versatile and widely available technology for the elimination of Legionella species from contaminated showerheads. We therefore advocate the employment of such devices to regularly disinfect showerheads and shower tubing in hairdressing salons, barber shops and gyms, as a critical control in the elimination of these organisms from these sources, thereby enhancing customer/client/staff safety.
-
-
-
Effective in vitro inactivation of SARS-CoV-2 by commercially available mouthwashes
Infectious SARS-CoV-2 can be recovered from the oral cavities and saliva of COVID-19 patients with potential implications for disease transmission. Reducing viral load in patient saliva using antiviral mouthwashes may therefore have a role as a control measure in limiting virus spread, particularly in dental settings. Here, the efficacy of SARS-CoV-2 inactivation by seven commercially available mouthwashes with a range of active ingredients were evaluated in vitro. We demonstrate ≥4.1 to ≥5.5 log10 reduction in SARS-CoV-2 titre following a 1 min treatment with commercially available mouthwashes containing 0.01–0.02 % stabilised hypochlorous acid or 0.58 % povidone iodine, and non-specialist mouthwashes with both alcohol-based and alcohol-free formulations designed for home use. In contrast, products containing 1.5 % hydrogen peroxide or 0.2 % chlorhexidine gluconate were ineffective against SARS-CoV-2 in these tests. This study contributes to the growing body of evidence surrounding virucidal efficacy of mouthwashes/oral rinses against SARS-CoV-2, and has important applications in reducing risk associated with aerosol generating procedures in dentistry and potentially for infection control more widely.
-
-
-
Investigative study into whether an insect repellent has virucidal activity against SARS-CoV-2
A small-scale study with Mosi-guard Natural spray, an insect repellent containing Citriodiol, was performed to determine if it has virucidal activity against SARS-CoV-2. A liquid test examined the activity of the insect repellent and the individual components for virucidal activity. A surface contact test looked at the activity of the insect repellent when impregnated on a latex surface as a synthetic skin for potential topical prophylactic application. Both Mosi-guard Natural spray and Citriodiol, as well as other components of the repellent, had virucidal activity in the liquid contact test. On a latex surface used to simulate treated skin, the titre of SARS-CoV-2 was less over time on the Mosi-guard Natural-treated surface but virus was still recovered.
-
-
-
SARS-CoV-2 one year on: evidence for ongoing viral adaptation
More LessSARS-CoV-2 is thought to have originated in the human population from a zoonotic spillover event. Infection in humans results in a variety of outcomes ranging from asymptomatic cases to the disease COVID-19, which can have significant morbidity and mortality, with over two million confirmed deaths worldwide as of January 2021. Over a year into the pandemic, sequencing analysis has shown that variants of SARS-CoV-2 are being selected as the virus continues to circulate widely within the human population. The predominant drivers of genetic variation within SARS-CoV-2 are single nucleotide polymorphisms (SNPs) caused by polymerase error, potential host factor driven RNA modification, and insertion/deletions (indels) resulting from the discontinuous nature of viral RNA synthesis. While many mutations represent neutral ‘genetic drift’ or have quickly died out, a subset may be affecting viral traits such as transmissibility, pathogenicity, host range, and antigenicity of the virus. In this review, we summarise the current extent of genetic change in SARS-CoV-2, particularly recently emerging variants of concern, and consider the phenotypic consequences of this viral evolution that may impact the future trajectory of the pandemic.
-
-
-
The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has caused a pandemic with tens of millions of cases and more than a million deaths. The infection causes COVID-19, a disease of the respiratory system of divergent severity. No treatment exists. Epigallocatechin-3-gallate (EGCG), the major component of green tea, has several beneficial properties, including antiviral activities. Therefore, we examined whether EGCG has antiviral activity against SARS-CoV-2. EGCG blocked not only the entry of SARS-CoV-2, but also MERS- and SARS-CoV pseudotyped lentiviral vectors and inhibited virus infections in vitro. Mechanistically, inhibition of the SARS-CoV-2 spike–receptor interaction was observed. Thus, EGCG might be suitable for use as a lead structure to develop more effective anti-COVID-19 drugs.
-
-
-
Inactivation of SARS-CoV-2 on surfaces and in solution with Virusend (TX-10), a novel disinfectant
More LessUntil an effective vaccine against SARS-CoV-2 is available on a widespread scale, the control of the COVID-19 pandemic is reliant upon effective pandemic control measures. The ability of SARS-CoV-2 to remain viable on surfaces and in aerosols, means indirect contact transmission can occur and there is an opportunity to reduce transmission using effective disinfectants in public and communal spaces. Virusend (TX-10), a novel disinfectant, has been developed as a highly effective disinfectant against a range of microbial agents. Here we investigate the ability of Virusend to inactivate SARS-CoV-2. Using surface and solution inactivation assays, we show that Virusend is able to reduce SARS-CoV-2 viral titre by 4 log10 p.f.u. ml−1 within 1 min of contact. Ensuring disinfectants are highly effective against SARS-CoV-2 is important in eliminating environmental sources of the virus to control the COVID-19 pandemic.
-
-
-
Large-scale sequencing of SARS-CoV-2 genomes from one region allows detailed epidemiology and enables local outbreak management
Andrew J. Page, Alison E. Mather, Thanh Le-Viet, Emma J. Meader, Nabil-Fareed Alikhan, Gemma L. Kay, Leonardo de Oliveira Martins, Alp Aydin, David J. Baker, Alexander J. Trotter, Steven Rudder, Ana P. Tedim, Anastasia Kolyva, Rachael Stanley, Muhammad Yasir, Maria Diaz, Will Potter, Claire Stuart, Lizzie Meadows, Andrew Bell, Ana Victoria Gutierrez, Nicholas M. Thomson, Evelien M. Adriaenssens, Tracey Swingler, Rachel A. J. Gilroy, Luke Griffith, Dheeraj K. Sethi, Dinesh Aggarwal, Colin S. Brown, Rose K. Davidson, Robert A. Kingsley, Luke Bedford, Lindsay J. Coupland, Ian G. Charles, Ngozi Elumogo, John Wain, Reenesh Prakash, Mark A. Webber, S. J. Louise Smith, Meera Chand, Samir Dervisevic, Justin O’Grady and The COVID-19 Genomics UK (COG-UK) ConsortiumThe COVID-19 pandemic has spread rapidly throughout the world. In the UK, the initial peak was in April 2020; in the county of Norfolk (UK) and surrounding areas, which has a stable, low-density population, over 3200 cases were reported between March and August 2020. As part of the activities of the national COVID-19 Genomics Consortium (COG-UK) we undertook whole genome sequencing of the SARS-CoV-2 genomes present in positive clinical samples from the Norfolk region. These samples were collected by four major hospitals, multiple minor hospitals, care facilities and community organizations within Norfolk and surrounding areas. We combined clinical metadata with the sequencing data from regional SARS-CoV-2 genomes to understand the origins, genetic variation, transmission and expansion (spread) of the virus within the region and provide context nationally. Data were fed back into the national effort for pandemic management, whilst simultaneously being used to assist local outbreak analyses. Overall, 1565 positive samples (172 per 100 000 population) from 1376 cases were evaluated; for 140 cases between two and six samples were available providing longitudinal data. This represented 42.6 % of all positive samples identified by hospital testing in the region and encompassed those with clinical need, and health and care workers and their families. In total, 1035 cases had genome sequences of sufficient quality to provide phylogenetic lineages. These genomes belonged to 26 distinct global lineages, indicating that there were multiple separate introductions into the region. Furthermore, 100 genetically distinct UK lineages were detected demonstrating local evolution, at a rate of ~2 SNPs per month, and multiple co-occurring lineages as the pandemic progressed. Our analysis: identified a discrete sublineage associated with six care facilities; found no evidence of reinfection in longitudinal samples; ruled out a nosocomial outbreak; identified 16 lineages in key workers which were not in patients, indicating infection control measures were effective; and found the D614G spike protein mutation which is linked to increased transmissibility dominates the samples and rapidly confirmed relatedness of cases in an outbreak at a food processing facility. The large-scale genome sequencing of SARS-CoV-2-positive samples has provided valuable additional data for public health epidemiology in the Norfolk region, and will continue to help identify and untangle hidden transmission chains as the pandemic evolves.
-
-
-
Mycoplasma pneumoniae co-infection with SARS-CoV-2: A case report
We report co-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Mycoplasma pneumoniae in a patient with pneumonia in India. Atypical bacterial pathogens causing community-acquired pneumonia may share similar clinical presentations and radiographic features with SARS-CoV-2 making a thorough differential diagnosis essential. The co-infection of SARS-CoV-2 and M. pneumoniae is infrequently reported in the literature. Broader testing for common respiratory pathogens should be performed in severe COVID-19 cases to rule out other concurrent infections. Early identification of co-existing respiratory pathogens could provide pathogen-directed therapy, and can save patient lives during the ongoing COVID-19 outbreak.
-
-
-
A comprehensive profile of genomic variations in the SARS-CoV-2 isolates from the state of Telangana, India
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 has rapidly turned into a pandemic, infecting millions and causing 1 157 509 (as of 27 October 2020) deaths across the globe. In addition to studying the mode of transmission and evasion of host immune system, analysing the viral mutational landscape constitutes an area under active research. The latter is expected to impart knowledge on the emergence of different clades, subclades, viral protein functions and protein–protein and protein–RNA interactions during replication/transcription cycle of virus and response to host immune checkpoints. In this study, we have attempted to bring forth the viral genomic variants defining the major clade(s) as identified from samples collected from the state of Telangana, India. We further report a comprehensive draft of all genomic variations (including unique mutations) present in SARS-CoV-2 strain in the state of Telangana. Our results reveal the presence of two mutually exclusive subgroups defined by specific variants within the dominant clade present in the population. This work attempts to bridge the critical gap regarding the genomic landscape and associate mutations in SARS-CoV-2 from a highly infected southern region of India, which was lacking to date.
-
-
-
A genetic element in the SARS-CoV-2 genome is shared with multiple insect species
More LessSARS-CoV-2 is a member of the subgenus Sarbecovirus and thus contains the genetic element s2m. We have extensively mined nucleotide data in GenBank in order to obtain a comprehensive list of s2m sequences both in the four virus families where s2m has previously been described and in other groups of organisms. Surprisingly, there seems to be a xenologue of s2m in a large number of insect species. The function of s2m is unknown, but our data show a very high degree of sequence conservation both in insects and in viruses and that the version of s2m found in SARS-CoV-2 has unique features, not seen in any other virus or insect strains.
-