Coronaviruses

Coronaviruses are a large family of viruses that can infect a range of hosts. They are known to cause diseases including the common cold, Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in humans.
In January 2020, China saw an outbreak of a new coronavirus strain now named SARS-CoV-2. Although the animal reservoir for the SARS and MERS viruses are known, this has yet to have been confirmed for SARS-CoV-2. All three strains are transmissible between humans.
To allow the widest possible distribution of relevant research, the Microbiology Society has brought together articles from across our portfolio and made this content freely available.
Image credit: "MERS-CoV" by NIAID is licensed under CC BY 2.0, this image has been modified.
Collection Contents
1 - 100 of 298 results
-
-
Evolution of the coronavirus spike protein in the full-length genome and defective viral genome under diverse selection pressures
How coronaviruses evolve by altering the structures of their full-length genome and defective viral genome (DVG) under dynamic selection pressures has not been studied. In this study, we aimed to experimentally identify the dynamic evolutionary patterns of the S protein sequence in the full-length genome and DVG under diverse selection pressures, including persistence, innate immunity and antiviral drugs. The evolutionary features of the S protein sequence in the full-length genome and in the DVG under diverse selection pressures are as follows: (i) the number of nucleotide (nt) mutations does not necessarily increase with the number of selection pressures; (ii) certain types of selection pressure(s) can lead to specific nt mutations; (iii) the mutated nt sequence can be reverted to the wild-type nt sequence under the certain type of selection pressure(s); (iv) the DVG can also undergo mutations and evolve independently of the full-length genome; and (v) DVG species are regulated during evolution under diverse selection pressures. The various evolutionary patterns of the S protein sequence in the full-length genome and DVG identified in this study may contribute to coronaviral fitness under diverse selection pressures.
-
-
-
Saliva sampling and its direct lysis is an excellent option for SARS-CoV-2 diagnosis in paediatric patients: comparison with the PanBio COVID-19 antigen rapid test in symptomatic and asymptomatic children
Introduction. Lateral flow test (LFTs) have been used as an alternative to reverse transcription quantitative PCR (RT-qPCR) in point-of-care testing. Despite their benefits, the sensitivity of LFTs may be low and is affected by several factors. We have previously reported the feasibility of using direct lysis of individual or pools of saliva samples from symptomatic and asymptomatic patients as a source of viral genomes for detection by RT-qPCR.
Hypothesis. Direct lysed saliva is more sensitive than antigen tests to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in samples from children.
Aim. Our goals here were to valuate the specificity and sensitivity of the PanBio COVID-19 antigen rapid test device (Ag-RTD) compared with RT-qPCR of direct lysed saliva.
Methodology. We evaluated the performance of the PanBio COVID-19 Ag-RTD in comparison to RT-qPCR direct lysed saliva from paired samples of 256 symptomatic and 242 asymptomatic paediatric patients.
Results. Overall, although there were no differences in the specificity (96.6%), we found a lower sensitivity (64.3%) of the PanBio Ag-test RTD compared to saliva in both symptomatic and asymptomatic patients. In addition, the sensitivity of PanBio was not correlated with the viral load present in the samples.
Conclusion. Our data highlight the benefits of using RT-qPCR and saliva samples for SARS-CoV-2 detection, particularly in paediatric patients.
-
-
-
Desmoglein-2 and COVID-19 complications: insights into its role as a biomarker, pathogenesis and clinical implications
Desmoglein-2 (DSG2) has emerged as a potential biomarker for coronavirus disease 2019 (COVID-19) complications, particularly cardiac and cardiovascular involvement. The expression of DSG2 in lung tissues has been detected at elevated levels, and circulating DSG2 levels correlate with COVID-19 severity. DSG2 may contribute to myocardial injury, cardiac dysfunction and vascular endothelial dysfunction in COVID-19. Monitoring DSG2 levels could aid in risk stratification, early detection and prognostication of COVID-19 complications. However, further research is required to validate DSG2 as a biomarker. Such research will aim to elucidate its precise role in pathogenesis, establishing standardized assays for its measurement and possibly identifying therapeutic targets.
-
-
-
Novel neutralizing mouse-human chimeric monoclonal antibodies against the SARS-CoV-2 receptor binding domain
Introduction. Neutralizing antibodies have been widely used for the prophylaxis and treatment of COVID-19.
Hypothesis. The major target for these neutralizing antibodies is the receptor-binding domain (RBD) of the viral spike protein.
Aim. In the present study, we developed and characterized three neutralizing chimeric mouse-human mAbs for potential therapeutic purposes.
Methodology. Light and heavy chain variable region genes of three mouse mAbs (m4E8, m3B6, and m1D1) were amplified and ligated to human Cγ1 and Cκ constant region genes by PCR. After cloning into a dual promoter mammalian expression vector, the final constructs were transiently expressed in DG-44 cells and the purified chimeric antibodies were characterized by ELISA and Western blotting. The neutralizing potency of the chimeric mAbs was determined by three different virus neutralization tests including sVNT, pVNT, and cVNT.
Results. All three recombinant chimeric mAbs display human constant regions and are able to specifically bind to the RBD of SARS-CoV-2 with affinities comparable to the parental mAbs. Western blot analysis showed similar epitope specificity profiles for both the chimeric and the parental mouse mAbs. The results of virus neutralization tests (sVNT, pVNT, and cVNT) indicate that c4E8 had the most potent neutralizing activity with IC50 values of 1.772, 0.009, and 0.01 µg ml−1, respectively. All chimeric and mouse mAbs displayed a similar pattern of reactivity with the spike protein of the SARS-CoV-2 variants of concern (VOC) tested, including alpha, delta, and wild-type.
Conclusion. The chimeric mAbs displayed neutralizing potency similar to the parental mouse mAbs and are potentially valuable tools for disease control.
-
-
-
SARS-CoV-2 in outdoor air following the third wave lockdown release, Portugal, 2021
More LessAiming to contribute with more data on the presence of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in outdoor environments, we performed air sampling in outdoor terraces from restaurants in three major cities of Portugal in April 2021, following the third wave lockdown release in the country. Air samples (n=19) were collected in 19 restaurant terraces during lunch time. Each air sample was collected using a Coriolis Compact air sampler, followed by RNA extraction and real-time quantitative PCR for the detection of viral RNA. Viral viability was also assessed through RNAse pre-treatment of samples. Only one of the 19 air samples was positive for SARS-CoV-2 RNA, with 7337 gene copies m–3 for the genomic region N2, with no viable virus in this sample. The low number of positive samples found in this study is not surprising, as sampling took place in outdoor settings where air circulation is optimal, and aerosols are rapidly dispersed by the air currents. These results are consistent with previous reports stating that transmission of SARS-CoV-2 in outdoor spaces is low, although current evidence shows an association of exposures in settings where drinking and eating is possible on-site with an increased risk in acquiring SARS-CoV-2 infection. Moreover, the minimal infectious dose for SARS-CoV-2 still needs to be determined so that the real risk of infection in different environments can be accurately established.
-
-
-
Performance evaluation of Novaplex SARS-CoV-2 variants assay kit series for SARS-CoV-2 detection using single nucleotide polymorphisms
More LessSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have received increasing attention globally because of their increased transmissibility and potential to escape immunity. Although whole-genome sequencing is the gold standard method for SARS-CoV-2 mutation detection and lineage determination, it is costly and time-consuming. However, SARS-CoV-2 variants can be identified based on select variant-specific single nucleotide polymorphisms (SNPs) in the spike protein-encoding gene (S). This study validated and compared the limit of detection (LOD) of L452R, N501Y, HV69/70 del and E484K as variant-specific SNPs of the S gene and RdRP as a SARS-CoV-2-specific gene, using the Novaplex SARS-CoV-2 variants assay kit series. For three SARS-CoV-2 lineages (B.1.617.2, B.1.1.7 and R.1), one strain per lineage was used. Variant-specific SNPs of the S gene were analysed using the Novaplex SARS-CoV-2 variants I assay and Novaplex SARS-CoV-2 variants II assay kits. Validation confirmed the LODs of the variant kits. The LOD for each target variant-specific SNP and RdRP was five RNA copies per reaction. The Novaplex SARS-CoV-2 variants assay kit series performs well and the LOD for SARS-CoV-2 detection and variant-specific SNP detection are consistent. The kits are suitable for use as routine laboratory tests for SARS-CoV-2 and variant-specific SNP detection in a single step, saving time and labour.
-
-
-
SARS-CoV-2 seroprevalence in hospital healthcare workers in Western Switzerland at the end of the second pandemic wave
Introduction. In early January 2020, the pandemic of COVID-19 (coronavirus disease 2019) rapidly spread from China and caused a worldwide pandemic.
Hypothesis. Healthcare workers represent a high-risk group for acquiring COVID-19 and for nosocomial transmission of severe acute respiratory coronavirus 2 (SARS-CoV-2).
Aim. We aimed to investigate over a 1 year period, across two pandemic waves, the SARS-CoV-2 seroprevalence in employees at a Western Switzerland public hospital.
Methodology. A prospective observational SARS-CoV-2 seroprevalence study was proposed to all hospital employees who enrolled on a voluntary basis.
Results. Out of 594 participants recruited on a voluntary basis, 269 volunteers (45.3 %) had anti-SARS-CoV-2 antibodies: this seroprevalence was twice higher than that reported in the local community. Healthcare workers with prolonged exposure to patients with COVID-19 showed a significantly higher odds ratio (OR) of having a positive SARS-CoV-2 serology [OR 3.19, 95 % confidence interval (CI) 2.16–4.74]. Symptoms showing the highest association with a positive serology were anosmia (OR 11.9, 95 % CI 5.58–30.9) and ageusia (OR 10.3, 95 % CI 4.8–26.3). A total of 17.1 % (95 % CI 12.2–21.1 %) of SARS-CoV-2 seropositive volunteers did not report a suspicion of COVID-19 in their personal history.
Conclusion. Overall, we observed that the impact of the second SARS-CoV-2 pandemic wave was considerable and significantly affected healthcare workers with prolonged exposure to patients with COVID-19.
-
-
-
The acceptability of testing contacts of confirmed COVID-19 cases using serial, self-administered lateral flow devices as an alternative to self-isolation
Introduction. Evidence suggests that although people modify their behaviours, full adherence to self-isolation guidance in England may be suboptimal, which may have a detrimental impact on COVID-19 transmission rates.
Hypothesis. Testing asymptomatic contacts of confirmed COVID-19 cases for the presence of SARS-CoV-2 could reduce onward transmission by improving case ascertainment and lessen the impact of self-isolation on un-infected individuals.
Aim. This study investigated the feasibility and acceptability of implementing a ‘test to enable approach’ as part of England’s tracing strategy.
Methodology. Contacts of confirmed COVID-19 cases were offered serial testing as an alternative to self-isolation using daily self-performed lateral flow device (LFD) tests for the first 7 days post-exposure. Asymptomatic participants with a negative LFD result were given 24 h of freedom from self-isolation between each test. A self-collected confirmatory PCR test was performed on testing positive or at the end of the LFD testing period.
Results. Of 1760 contacts, 882 consented to daily testing, of whom 812 individuals were within 48 h of exposure and were sent LFD testing packs. Of those who declined to participate, 39.1% stated they had already accessed PCR testing. Of the 812 who were sent LFD packs, 570 (70.2%) reported one or more LFD results; 102 (17.9%) tested positive. Concordance between reported LFD result and a supplied LFD image was 97.1%. In total, 82.8% of PCR-positive samples and 99.6% of PCR-negative samples were correctly detected by LFD. The proportion of secondary cases from contacts of those who participated in the study and tested positive (6.3%; 95% CI: 3.4–11.1%) was comparable to a comparator group who self-isolated (7.6%; 95% CI: 7.3–7.8%).
Conclusion. This study shows a high acceptability, compliance and positivity rates when using self-administered LFDs among contacts of confirmed COVID-19 cases. Offering routine testing as a structured part of the contact tracing process is likely to be an effective method of case ascertainment.
-
-
-
Replacement of the Alpha variant of SARS-CoV-2 by the Delta variant in Lebanon between April and June 2021
Georgi Merhi, Alexander J. Trotter, Leonardo de Oliveira Martins, Jad Koweyes, Thanh Le-Viet, Hala Abou Naja, Mona Al Buaini, Sophie J. Prosolek, Nabil-Fareed Alikhan, Martin Lott, Tatiana Tohmeh, Bassam Badran, Orla J. Jupp, Sarah Gardner, Matthew W. Felgate, Kate A. Makin, Janine M. Wilkinson, Rachael Stanley, Abdul K. Sesay, Mark A. Webber, Rose K. Davidson, Nada Ghosn, Mark Pallen, Hamad Hasan, Andrew J. Page and Sima TokajianThe COVID-19 pandemic continues to expand globally, with case numbers rising in many areas of the world, including the Eastern Mediterranean Region. Lebanon experienced its largest wave of COVID-19 infections from January to April 2021. Limited genomic surveillance was undertaken, with just 26 SARS-CoV-2 genomes available for this period, nine of which were from travellers from Lebanon detected by other countries. Additional genome sequencing is thus needed to allow surveillance of variants in circulation. In total, 905 SARS-CoV-2 genomes were sequenced using the ARTIC protocol. The genomes were derived from SARS-CoV-2-positive samples, selected retrospectively from the sentinel COVID-19 surveillance network, to capture diversity of location, sampling time, sex, nationality and age. Although 16 PANGO lineages were circulating in Lebanon in January 2021, by February there were just four, with the Alpha variant accounting for 97 % of samples. In the following 2 months, all samples contained the Alpha variant. However, this had changed dramatically by June and July 2021, when all samples belonged to the Delta variant. This study documents a ten-fold increase in the number of SARS-CoV-2 genomes available from Lebanon. The Alpha variant, first detected in the UK, rapidly swept through Lebanon, causing the country's largest wave to date, which peaked in January 2021. The Alpha variant was introduced to Lebanon multiple times despite travel restrictions, but the source of these introductions remains uncertain. The Delta variant was detected in Gambia in travellers from Lebanon in mid-May, suggesting community transmission in Lebanon several weeks before this variant was detected in the country. Prospective sequencing in June/July 2021 showed that the Delta variant had completely replaced the Alpha variant in under 6 weeks.
-
-
-
Catwalk: identifying closely related sequences in large microbial sequence databases
More LessThere is a need to identify microbial sequences that may form part of transmission chains, or that may represent importations across national boundaries, amidst large numbers of SARS-CoV-2 and other bacterial or viral sequences. Reference-based compression is a sequence analysis technique that allows both a compact storage of sequence data and comparisons between sequences. Published implementations of the approach are being challenged by the large sample collections now being generated. Our aim was to develop a fast software detecting highly similar sequences in large collections of microbial genomes, including millions of SARS-CoV-2 genomes. To do so, we developed Catwalk, a tool that bypasses bottlenecks in the generation, comparison and in-memory storage of microbial genomes generated by reference mapping. It is a compiled solution, coded in Nim to increase performance. It can be accessed via command line, rest api or web server interfaces. We tested Catwalk using both SARS-CoV-2 and Mycobacterium tuberculosis genomes generated by prospective public-health sequencing programmes. Pairwise sequence comparisons, using clinically relevant similarity cut-offs, took about 0.39 and 0.66 μs, respectively; in 1 s, between 1 and 2 million sequences can be searched. Catwalk operates about 1700 times faster than, and uses about 8 % of the RAM of, a Python reference-based compression and comparison tool in current use for outbreak detection. Catwalk can rapidly identify close relatives of a SARS-CoV-2 or M. tuberculosis genome amidst millions of samples.
-
-
-
Identification and characterization of virus-encoded circular RNAs in host cells
Emerging evidence has identified viral circular RNAs (circRNAs) in human cells infected by viruses, interfering with the immune system and inducing diseases including human cancer. However, the biogenesis and regulatory mechanisms of virus-encoded circRNAs in host cells remain unknown. In this study, we used the circRNA detection tool CIRI2 to systematically determine the virus-encoded circRNAs in virus-infected cancer cell lines and cancer patients, by analysing RNA-Seq datasets derived from RNase R-treated samples. Based on the thousands of viral circRNAs we identified, the biological characteristics and potential roles of viral circRNAs in regulating host cell function were determined. In addition, we developed a Viral-circRNA Database (http://www.hywanglab.cn/vcRNAdb/), which is open to all users to search, browse and download information on circRNAs encoded by viruses upon infection.
-
-
-
Evaluation of the antifungal effect of chlorogenic acid against strains of Candida spp. resistant to fluconazole: apoptosis induction and in silico analysis of the possible mechanisms of action
Cecília Rocha da Silva, Lívia Gurgel do Amaral Valente Sá, Ermerson Vieira dos Santos, Thais Lima Ferreira, Tatiana do Nascimento Paiva Coutinho, Lara Elloyse Almeida Moreira, Rosana de Sousa Campos, Claudia Roberta de Andrade, Wildson Max Barbosa da Silva, Igor de Sá Carneiro, Jacilene Silva, Hélcio Silva dos Santos, Emmanuel Silva Marinho, Bruno Coelho Cavalcanti, Manoel Odorico de Moraes, Hélio Vitoriano Nobre Júnior and João Batista Andrade NetoIntroduction. Candida spp. are commensal fungal pathogens of humans, but when there is an imbalance in the microbiota, or weak host immunity, these yeasts can become pathogenic, generating high medical costs.
Gap Statement. With the increase in resistance to conventional antifungals, the development of new therapeutic strategies is necessary.
This study evaluated the in vitro antifungal activity of chlorogenic acid against fluconazole-resistant strains of Candida spp.
Mechanism of action through flow cytometry and in silico analyses, as well as molecular docking assays with ALS3 and SAP5, important proteins in the pathogenesis of Candida albicans associated with the adhesion process and biofilm formation.
Results. The chlorogenic acid showed in vitro antifungal activity against the strains tested, causing reduced cell viability, increased potential for mitochondrial depolarization and production of reactive oxygen species, DNA fragmentation and phosphatidylserine externalization, indicating an apoptotic process. Concerning the analysis through docking, the complexes formed between chlorogenic acid and the targets Thymidylate Kinase, CYP51, 1Yeast Cytochrome BC1 Complex e Exo-B-(1,3)-glucanase demonstrated more favourable binding energy. In addition, chlorogenic acid presented significant interactions with the ALS3 active site residues of C. albicans, important in the adhesion process and resistance to fluconazole. Regarding molecular docking with SAP5, no significant interactions were found between chlorogenic acid and the active site of the enzyme.
Conclusion. We concluded that chlorogenic acid has potential use as an adjuvant in antifungal therapies, due to its anti-Candida activity and ability to interact with important drug targets.
-
-
-
Network pharmacology and experimental validation identify the potential mechanism of sophocarpine for COVID-19
More LessIntroduction. Coronavirus disease 2019 (COVID-19) has caused a serious threat to public health worldwide, and there is currently no effective therapeutic strategy for treating COVID-19.
Hypothesis/Gap Statement. We propose that sophocarpine (SOP) might have potential therapeutic effects on COVID-19 through inhibiting the cytokine storm and the nuclear factor NF-κB signalling pathway.
Aim. The objective was to elucidate the potential mechanism of SOP against COVID-19 through a network pharmacology analysis and its experimental validation.
Methodology. The BATMAN-TCM database was used to identify the therapeutic targets of SOP, while the GeneCards and DisGeNET databases were used to identify the targets related to COVID-19. A protein–protein interaction (PPI) network was constructed from the STRING and analysed using Cytoscape software. Gene ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG) and disease ontology (DO) enrichment analyses of the co-targets were performed using Metascape. Autodock 4.2.6 and Pymol software were applied for molecular docking. Levels of the proinflammatory cytokines IL-6, TNFα and IL-1β were measured by ELISA, while mRNA expression levels of intercellular adhesion molecule 1 (ICAM-1), vascular endothelial growth factor A (VEGFA) and IFN gamma (IFNG) were detected by real-time quantitative reverse transcription PCR. The protein levels of the molecules involved in the NF-κB signalling pathway were validated by western blot analysis.
Results. A total of 65 co-targets of SOP and COVID-19 were determined. GO and KEGG enrichment analyses suggested that SOP affected COVID-19 by regulating the IL-17 signalling pathway, TNF signalling pathway and other signalling pathways. The PPI network and molecular docking showed that p65, ICAM-1 and VEGFA were key targets of SOP against COVID-19 and the underlying mechanism was validated in A549 cells in vitro. SOP attenuated the LPS-induced production of TNF-α and IL-6 and downregulated the LPS-induced mRNA expression of ICAM-1, VEGFA and IFNG. Mechanistically, SOP pretreatment inhibited the phosphorylation of p65 and facilitated the activation of Nrf2.
Conclusions. SOP has a potential therapeutic effect on COVID-19 through multiple pathways and targets, and inhibits the production of pro-inflammatory cytokines and molecules involved in the NF-κB signalling pathway.
-
-
-
Reporting of RT-PCR cycle threshold (Ct) values during the first wave of COVID-19 in Qatar improved result interpretation in clinical and public health settings
Peter V. Coyle, Naema Hassan Al Molawi, Mohamed Ali Ben Hadj Kacem, Reham Awni El Kahlout, Einas Al Kuwari, Abdullatif Al Khal, Imtiaz Gillani, Andrew Jeremijenko, Hatoun Saeb, Mohammad Al Thani, Roberto Bertollini, Hanan F. Abdul Rahim, Hiam Chemaitelly, Patrick Tang, Ali Nizar Latif, Saad Al Kaabi, Muna A. Rahman S. Al Maslamani, Brendan David Morris, Nasser Al-Ansari, Anvar Hassan Kaleeckal and Laith J. Abu RaddadIntroduction. The cycle threshold (Ct) value in real-time PCR (RT-PCR) is where a target-specific amplification signal becomes detectable and can infer viral load, risk of transmission and recovery. Use of Ct values in routine practice is uncommon.
Gap Statement. There is a lack of routine use of Ct values when reporting RT-PCR results in routine practice.
Aim. To automatically insert Ct values and interpretive comments when reporting SARS-CoV-2 RT-PCR to improve patient management.
Methodology. Routine Ct values across three different RT-PCR platforms were reviewed for concordance at presentation and clearance in patients with COVID-19. An indicative threshold (IT) linked to viral clearance kinetics was defined at Ct30 to categorize Ct values as low and high, reflecting high and low viral loads respectively.
Results. The different gene targets of each platform showed high correlation and kappa score agreement (P<0.001). Average Ct values were automatically generated with values ≤Ct30 reported as positive and >Ct30 as reactive; interpretive comments were added to all reports. The new reporting algorithm impacted on: physician interpretation of SARS-CoV-2 results; patient management and transfer; staff surveillance; length of stay in quarantine; and redefinition of patient recovery.
Conclusion. Incorporation of Ct values into routine practice is possible across different RT-PCR platforms and adds useful information for patient management. The use of an IT with interpretive comments improves clinical interpretation and could be a model for reporting other respiratory infections. Withholding Ct values wastes useful clinical data and should be reviewed by the profession, accreditation bodies and regulators.
-
-
-
SARS-CoV-2 and Prevotella spp.: friend or foe? A systematic literature review
During this global pandemic of the COVID-19 disease, a lot of information has arisen in the media and online without scientific validation, and among these is the possibility that this disease could be aggravated by a secondary bacterial infection such as Prevotella, as well as the interest or not in using azithromycin, a potentially active antimicrobial agent. The aim of this study was to carry out a systematic literature review, to prove or disprove these allegations by scientific arguments. The search included Medline, PubMed, and Pubtator Central databases for English-language articles published 1999–2021. After removing duplicates, a total of final eligible studies (n=149) were selected. There were more articles showing an increase of Prevotella abundance in the presence of viral infection like that related to Human Immunodeficiency Virus (HIV), Papillomavirus (HPV), Herpesviridae and respiratory virus, highlighting differences according to methodologies and patient groups. The arguments for or against the use of azithromycin are stated in light of the results of the literature, showing the role of intercurrent factors, such as age, drug consumption, the presence of cancer or periodontal diseases. However, clinical trials are lacking to prove the direct link between the presence of Prevotella spp. and a worsening of COVID-19, mainly those using azithromycin alone in this indication.
-
-
-
A comparison of SARS-CoV-2 RNA extraction with the QuickGene-810 Nucleic Acid Isolation System compared to the EZ1 Advanced DSP Virus Kit
More LessThe QuickGene-810 Nucleic Acid Isolation System is a semi-automated extraction platform which may be used for RNA extraction. New methods were required to support the rapid increase in respiratory virus testing during the SARS-CoV-2 pandemic. The aim of this study was to assess SARS-CoV-2 RNA extraction using the QuickGene-810 kit compared to the EZ1 Advanced Extraction Platform for use on the AusDiagnostics SARS-CoV-2, Influenza and RSV 8-well RT-PCR assay. Qualitative results from all clinical samples were concordant between the QuickGene-810 and the EZ1 extraction methods, demonstrating that the QuickGene-810 kit is suitable for use in pathogen diagnostics. However, there was an average difference of approximately two cycles between the cycle threshold (Ct) values for both SARS-CoV-2 targets, suggesting that the EZ1 kit yields a higher concentration of nucleic acid extract, possibly related to its use of carrier RNA and/or smaller elution volume, which infers the possibility of false negative results for samples with very low viral loads.
-
-
-
Feasibility of a refurbished shipping container as a transportable laboratory for rapid SARS-CoV-2 diagnostics
Background. Australia’s response to the coronavirus disease 2019 (COVID-19) pandemic relies on widespread availability of rapid, accurate testing and reporting of results to facilitate contact tracing. The extensive geographical area of Australia presents a logistical challenge, with many of the population located distant from a laboratory capable of robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. A strategy to address this is the deployment of a mobile facility utilizing novel diagnostic platforms. This study aimed to evaluate the feasibility of a fully contained transportable SARS-CoV-2 testing laboratory using a range of rapid point-of-care tests.
Method. A 20 ft (6.1 m) shipping container was refurbished (GeneWorks, Adelaide, South Australia) with climate controls, laboratory benches, hand-wash station and a class II biosafety cabinet. Portable marquees situated adjacent to the container served as stations for registration, sample acquisition and personal protective equipment for staff. Specimens were collected and tested on-site utilizing either the Abbott ID NOW or Abbott Panbio rapid tests. SARS-CoV-2 positive results from the rapid platforms or any participants reporting symptoms consistent with COVID-19 were tested on-site by GeneXpert Xpress RT-PCR. All samples were tested in parallel with a standard-of-care RT-PCR test (Panther Fusion SARS-CoV-2 assay) performed at the public health reference laboratory. In-laboratory environmental conditions and data management-related factors were also recorded.
Results. Over a 3 week period, 415 participants were recruited for point-of-care SARS-CoV-2 testing. From time of enrolment, the median result turnaround time was 26 min for the Abbott ID NOW, 32 min for the Abbott Panbio and 75 min for the Xpert Xpress. The environmental conditions of the refurbished shipping container were found to be suitable for all platforms tested, although humidity may have produced condensation within the container. Available software enabled turnaround times to be recorded, although technical malfunction resulted in incomplete data capture.
Conclusion. Transportable container laboratories can enable rapid COVID-19 results at the point of care and may be useful during outbreak settings, particularly in environments that are physically distant from centralized laboratories. They may also be appropriate in resource-limited settings. The results of this pilot study confirm feasibility, although larger trials to validate individual rapid point-of-care testing platforms in this environment are required.
-
-
-
SARS-CoV-2 variants of concern alpha, beta, gamma and delta have extended ACE2 receptor host ranges
Following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in PR China in late 2019 a number of variants have emerged, with two of these – alpha and delta – subsequently growing to global prevalence. One characteristic of these variants are changes within the spike protein, in particular the receptor-binding domain (RBD). From a public health perspective, these changes have important implications for increased transmissibility and immune escape; however, their presence could also modify the intrinsic host range of the virus. Using viral pseudotyping, we examined whether the variants of concern (VOCs) alpha, beta, gamma and delta have differing host angiotensin-converting enzyme 2 (ACE2) receptor usage patterns, focusing on a range of relevant mammalian ACE2 proteins. All four VOCs were able to overcome a previous restriction for mouse ACE2, with demonstrable differences also seen for individual VOCs with rat, ferret or civet ACE2 receptors, changes that we subsequently attributed to N501Y and E484K substitutions within the spike RBD.
-
-
-
Second infection with SARS-CoV-2 wild-type is associated with increased disease burden after primary SARS-CoV-2/HBoV-1 coinfection, Cologne, Germany
SARS-CoV-2 is the cause of the still-ongoing COVID-19 pandemic. To date reports on re-infections after full recovery from a previous COVID-19 course remain limited due to the fact that re-infections or second infections occur at the earliest between 3 to 24 months after full recovery while the pandemic lasts only since a year. Even less data are available on re-infections associated with emerging variants.
A 33-year-old previously healthy male patient was tested twice SARS-CoV-2 RNA positive with an 8 months symptom-free interval between the two COVID-19 episodes in our setting in Cologne, Germany. While the first episode was accompanied by a co-detection of human bocavirus and hardly any symptoms, the second episode was characterized by serious illness and severe flu-like symptoms, although hospitalization was not required. After the first episode no residual viral RNA was detected after the patient was released from quarantine. Follow up of the patient revealed a moderate but significant reduction of the lung volume and slightly impaired diffusion capacity.
Conclusion. While it is known that re-infections with SARS-CoV-2 may occur this is the first report of a co-detection of human bocavirus (HBoV) during a primary SARS-CoV-2 infection. The first, hardly symptomatic episode showed that co-infections do not necessarily initiate severe COVID-19 courses. The second more severe episode with serious flu-like symptoms could be explained by the sustained mild damage of the airways during the primary infection.
-
-
-
An isothermal amplification-coupled dipstick for the rapid detection of COVID-19
More LessEarly detection of coronavirus disease 2019 (COVID-19) is critical for both initiating appropriate treatment and preventing the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent. A simple and rapid diagnostic test that can be performed without any expensive equipment would be valuable for clinicians working in a low-resource setting. Here, we report a point-of-care detection technique for COVID-19 that combines the power of isothermal amplification (reverse transcription helicase-dependent amplification, RT-HDA) and dipstick technologies. The limit of detection of this diagnostic test is six copies of SARS-CoV-2 µl−1 in clinical specimens. Of the 22 clinical specimens tested, RT-HDA-coupled dipstick correctly identified all positive and negative specimens. The RT-HDA can be performed over a heating block and the results can be interpreted visually with the dipstick technology without any specialized equipment. Furthermore, the RT-HDA-coupled dipstick could be performed in a short turnaround time of ~2 h. Thus, the RT-HDA-coupled dipstick could serve as a point-of-care diagnostic test for COVID-19 in a low-resource environment.
-
-
-
Effect of RNA quality to SARS-CoV-2 RT-qPCR detection from saliva
Saliva is an alternative sample material to nasopharyngeal swab in SARS-CoV-2 diagnostics. We investigated possible aspects to improve the reliability of SARS-CoV-2 detection from saliva. Saliva was collected from asymptomatic healthy subjects (n=133) and COVID-19 patients (n=9). SARS-CoV-2 detection was performed with quantitative reverse-transcriptase PCR (RT-qPCR) with two viral and one host target serving as an internal control. The use of internal control revealed that in the first RT-qPCR run 25–30 % of assays failed. The failure is associated with poor RNA quality. When the amount of RNA was cut down to half from the original amount, the performance of RT-qPCR was greatly enhanced (95 % of the assays succeeded). The quality of RNA was not affected by the use of different nucleic acid stabilizing buffers. Our study showed that saliva is suitable material for RT-qPCR based SARS-CoV-2 diagnostics, but the use of internal control is essential to distinguish the true negative samples from failed assays.
-
-
-
Incidence of COVID-19 infection and its variation with demographic and clinical profile: lessons learned at a COVID-19 RT-PCR laboratory in Nagpur, India
Introduction. The coronavirus disease 2019 (COVID-19) pandemic emerged as a global health crisis in 2020. The first case in India was reported on 30 January 2020 and the disease spread throughout the country within months. Old persons, immunocompromised patients and persons with co-morbidities, especially of the respiratory system, have a more severe and often fatal outcome to the disease. In this study we have analysed the socio-demographic trend of the COVID-19 outbreak in Nagpur and adjoining districts.
Methods. The study was conducted from April to December 2020. Nasopharyngeal and oropharyngeal swabs collected from suspected cases of COVID-19 were tested using reverse-transcription polymerase chain reaction (RT-PCR) at a diagnostic molecular laboratory at a tertiary care hospital in central India. Patient-related data on demographic profile and indication for testing were obtained from laboratory requisition forms. The results of the inconclusive repeat samples were also noted. The data were analysed using SPSS v24.0.
Results. A total of 46 898 samples were received from April to December 2020, of which 41 410 were included in the study; 90.6 % of samples belonged to adults and 9.4 % belonged to children. The overall positivity rate in the samples was 19.3 %, although it varied over the period. The yield was significantly high in the elderly age group (25.5 %) and symptomatic patients (22.6 %). On repeat testing of patients whose first test was inconclusive, 17.1% were positive. There was a steady increase of both the number of tests and the rate of positivity in the initial period of the study, followed by a sharp decline.
Conclusion. We can conclude that rigorous contact tracing and COVID-appropriate behaviour (wearing a mask, social distancing and hand hygiene) are required to break the chain of transmission. Elderly people are more susceptible to infection and should follow stringent precautions. It is also important to perform repeat testing of those individuals whose tests are inconclusive with fresh samples so that no positive cases are missed. Understanding of demographics is crucial for better management of this crisis and proper allocation of resources.
-
-
-
Unusual SARS-CoV-2 intrahost diversity reveals lineage superinfection
Filipe Zimmer Dezordi, Paola Cristina Resende, Felipe Gomes Naveca, Valdinete Alves do Nascimento, Victor Costa de Souza, Anna Carolina Dias Paixão, Luciana Appolinario, Renata Serrano Lopes, Ana Carolina da Fonseca Mendonça, Alice Sampaio Barreto da Rocha, Taina Moreira Martins Venas, Elisa Cavalcante Pereira, Marcelo Henrique Santos Paiva, Cassia Docena, Matheus Filgueira Bezerra, Laís Ceschini Machado, Richard Steiner Salvato, Tatiana Schäffer Gregianini, Leticia Garay Martins, Felicidade Mota Pereira, Darcita Buerger Rovaris, Sandra Bianchini Fernandes, Rodrigo Ribeiro-Rodrigues, Thais Oliveira Costa, Joaquim Cesar Sousa Jr, Fabio Miyajima, Edson Delatorre, Tiago Gräf, Gonzalo Bello, Marilda Mendonça Siqueira and Gabriel Luz WallauSevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide by July 2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The simultaneous infection of a single individual by two distinct SARS-CoV-2 lineages may impact COVID-19 disease progression and provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. Several hundred SARS-CoV-2 lineages are currently well phylogenetically defined, but two main factors have precluded major coinfection/codetection and recombination analysis thus far: (i) the low diversity of SARS-CoV-2 lineages during the first year of the pandemic, which limited the identification of lineage defining mutations necessary to distinguish coinfecting/recombining viral lineages; and the (ii) limited availability of raw sequencing data where abundance and distribution of intrasample/intrahost variability can be accessed. Here, we assembled a large sequencing dataset from Brazilian samples covering a period of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. This approach enabled us to detect nine cases of SARS-CoV-2 coinfection with well characterized lineage-defining mutations, representing 0.61 % of all samples investigated. In addition, we matched these SARS-CoV-2 coinfections with spatio-temporal epidemiological data confirming its plausibility with the cocirculating lineages at the timeframe investigated. Our data suggests that coinfection with distinct SARS-CoV-2 lineages is a rare phenomenon, although it is certainly a lower bound estimate considering the difficulty to detect coinfections with very similar SARS-CoV-2 lineages and the low number of samples sequenced from the total number of infections.
-
-
-
Selection and T-cell antigenicity of synthetic long peptides derived from SARS-CoV-2
More LessThe pandemic caused by SARS-CoV-2 has led to the successful development of effective vaccines however the prospect of variants of SARS-CoV-2 and future coronavirus outbreaks necessitates the investigation of other vaccine strategies capable of broadening vaccine mediated T-cell responses and potentially providing cross-immunity. In this study the SARS-CoV-2 proteome was assessed for clusters of immunogenic epitopes restricted to diverse human leucocyte antigen. These regions were then assessed for their conservation amongst other coronaviruses representative of different alpha and beta coronavirus genera. Sixteen highly conserved peptides containing numerous HLA class I and II restricted epitopes were synthesized from these regions and assessed in vitro for their antigenicity against T-cells from individuals with previous SARS-CoV-2 infection. Monocyte derived dendritic cells were generated from these peripheral blood mononuclear cells (PBMC), loaded with SARS-CoV-2 peptides, and used to induce autologous CD4+ and CD8+ T cell activation. The SARS-CoV-2 peptides demonstrated antigenicity against the T-cells from individuals with previous SARS-CoV-2 infection indicating that this approach holds promise as a method to activate anti-SAR-CoV-2 T-cell responses from conserved regions of the virus which are not included in vaccines utilising the Spike protein.
-
-
-
SARS-CoV-2 genetic variations associated with COVID-19 pathogenicity
In this study, we performed genome-wide association analyses on SARS-CoV-2 genomes to identify genetic mutations associated with pre-symptomatic/asymptomatic COVID-19 cases. Various potential covariates and confounding factors of COVID-19 severity, including patient age, gender and country, as well as virus phylogenetic relatedness were adjusted for. In total, 3021 full-length genomes of SARS-CoV-2 generated from original clinical samples and whose patient status could be determined conclusively as either ‘pre-symptomatic/asymptomatic’ or ‘symptomatic’ were retrieved from the GISAID database. We found that the mutation 11 083G>T, located in the coding region of non-structural protein 6, is significantly associated with asymptomatic COVID-19. Patient age is positively correlated with symptomatic infection, while gender is not significantly correlated with the development of the disease. We also found that the effects of the mutation, patient age and gender do not vary significantly among countries, although each country appears to have varying baseline chances of COVID-19 symptom development.
-
-
-
Characteristics of patients with suspected COVID-19 pneumonia and repeatedly negative RT-PCR
Objectives. Challenges remain and there are still a sufficient number of cases with epidemiological, clinical features and radiological data suggestive of COVID-19 pneumonia that persist negative in their RT-PCR results. The aim of the study was to define the distinguishing characteristics between patients developing a serological response to SARS-CoV-2 and those who did not.
Methods. RT-PCR tests used were TaqPath 2019-nCoV Assay Kit v1 (ORF-1ab, N and S genes) from Thermo Fisher Diagnostics and SARS-COV-2 Kit (N and E genes) from Vircell. Serological response was tested using the rapid SARS-CoV2 IgG/IgM Test Cassette from T and D Diagnostics Canada and CMC Medical Devices and Drugs, S.L, CE.
Results. In this cross-sectional study, we included a cohort of 52 patients recruited from 31 March 2020 to 23 April 2020. Patients with positive serology had an older average age (73.29) compared to those who were negative (54.82) (P<0.05). Sat02 in 27 of 34 patients with positive serology were below 94% (P<0.05). There was a frequency of 1.5% negative SARS-CoV-2 RT-PCRs during the study period concurring with 36.7% of positivity.
Conclusions. Clinical features and other biomarkers in a context of a positive serology can be considered crucial for diagnosis.
-
-
-
Insights on the SARS-CoV-2 genome variability: the lesson learned in Brazil and its impacts on the future of pandemics
Since the beginning of the SARS-CoV-2 spread in Brazil, few studies have been published analysing the variability of viral genome. Herein, we described the dynamic of SARS-CoV-2 strains circulating in Brazil from May to September 2020, to better understand viral changes that may affect the ongoing pandemic. Our data demonstrate that some of the mutations identified are currently observed in variants of interest and variants of concern, and emphasize the importance of studying previous periods in order to comprehend the emergence of new variants. From 720 SARS-CoV-2 genome sequences, we found few sites under positive selection pressure, such as the D614G (98.5 %) in the spike, that has replaced the old variant; the V1167F in the spike (41 %), identified in the P.2 variant that emerged from Brazil during the period of analysis; and I292T (39 %) in the N protein. There were a few alterations in the UTRs, which was expected, however, our data suggest that the emergence of new variants was not influenced by mutations in UTR regions, since it maintained its conformational structure in most analysed sequences. In phylogenetic analysis, the spread of SARS-CoV-2 from the large urban centres to the countryside during these months could be explained by the flexibilization of social isolation measures and also could be associated with possible new waves of infection. These results allow a better understanding of SARS-CoV-2 strains that have circulated in Brazil, and thus, with relevant infomation, provide the potential viral changes that may have affected and/or contributed to the current and future scenario of the COVID-19 pandemic.
-
-
-
Not all wavelengths are created equal: disinfection of SARS-CoV-2 using UVC radiation is wavelength-dependent
More LessSARS-CoV-2 is mostly transmitted through close contact with infected people by infected aerosols and fomites. Ultraviolet subtype C (UVC) lamps and light-emitting diodes can be used to disrupt the transmission chain by disinfecting fomites, thus managing the disease outbreak progression. Here, we assess the ultraviolet wavelengths that are most effective in inactivation of SARS-CoV-2 on fomites. Variations in UVC wavelengths impact the dose required for disinfection of SARS-CoV-2 and alter how rapidly and effectively disruption of the virus transmission chain can be achieved. This study reveals that shorter wavelengths (254–268 nm) take a maximum of 6.25 mJ/cm2 over 5 s to obtain a target SARS-CoV-2 reduction of 99.9%. Longer wavelengths, like 280 nm, take longer irradiation time and higher dose to inactivate SARS-CoV-2. These observations emphasize that SARS-CoV-2 inactivation is wavelength-dependent.
-
-
-
Effect of COVID-19 on vaccination coverage in Brazil
More LessDuring the COVID-19 pandemic, recommendations for maintaining physical distance, restricted mobility measures, as well as fear of mass transmission by going to health centers have significantly contributed to the general vaccination coverage, which by and large is decreasing worldwide; thus, favoring the potential re-emergence of vaccine-preventable diseases. In this study, we have used the existing data on vaccination coverage during the pre-pandemic (2019) as well as the pandemic (2020) period to evaluate the impact of coronavirus outbreaks during the vaccination drive in Brazil. Furthermore, we have accumulated data since 2015 among the different regions of the country to acquire more consistent information. The various vaccines analyzed in our study were meningococcal C conjugate, Triple antigen vaccine, 10-valent pneumococcal conjugate, and BCG; subsequently, the data were obtained from the National Disease Notification System. This study revealed that the ongoing immunization drive saw a steep decline of around 10 to 20% during the (2019–2020) pandemic period in Brazil. These results provide strong evidence towards the decreasing trends following the vaccination programs during the COVID-19 pandemic period in Brazil. Furthermore, our results also highlight the importance of adopting widespread multi-component interventions to improve vaccination uptake rates.
-
-
-
SARS-CoV-2 IgG antibody responses in rt-PCR-positive cases: first report from India
Introduction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody responses remain poorly understood and the clinical utility of serological testing is still unclear.
Aim. To understand the relationship between the antibody response to SARS-CoV-2 infection and the demographics and cycle threshold (C t) values of confirmed RT-PCR patients.
Methodology. A total of 384 serum samples were collected from individuals between 4–6 weeks after confirmed SARS-CoV-2 infection and tested for the development of immunoglobulin class G (IgG) against SARS-CoV-2. The C t values, age, gender and symptoms of the patients were correlated with the development of antibodies.
Results. IgG positivity was found to be 80.2 % (95 % CI, 76.2–84.2). Positivity increased with a decrease in the C t value, with the highest (87.6 %) positivity observed in individuals with C t values <20. The mean (±sd) C t values for IgG positives and negatives were 23.34 (±6.09) and 26.72 (±7.031), respectively. No significant difference was found for demographic characteristics such as age and sex and symptoms and antibody response. The current study is the first of its kind wherein we have assessed the correlation of the RT-PCR C t with the development of IgG against SARS-CoV-2.
Conclusion. Although C t values might not have any relation with the development of symptoms, they are associated with the antibody response among SARS-CoV-2-infected individuals.
-
-
-
High SARS-CoV-2 viral load is associated with a worse clinical outcome of COVID-19 disease
María Eugenia Soria, Marta Cortón, Brenda Martínez-González, Rebeca Lobo-Vega, Lucía Vázquez-Sirvent, Rosario López-Rodríguez, Berta Almoguera, Ignacio Mahillo, Pablo Mínguez, Antonio Herrero, Juan Carlos Taracido, Alicia Macías-Valcayo, Jaime Esteban, Ricardo Fernandez-Roblas, Ignacio Gadea, Javier Ruíz-Hornillos, Carmen Ayuso and Celia PeralesCOVID-19 severity and progression are determined by several host and virological factors that may influence the final outcome of SARS-CoV-2-infected patients. The objective of this work was to determine a possible association between viral load, obtained from nasopharyngeal swabs, and the severity of the infection in a cohort of 448 SARS-CoV-2-infected patients from a hospital in Madrid during the first outbreak of the pandemic in Spain. To perform this, we clinically classified patients as mild, moderate and severe COVID-19 according to a number of clinical parameters such as hospitalization requirement, need of oxygen therapy, admission to intensive care units and/or death. Also, Ct values were determined using SARS-CoV-2-specific oligonucleotides directed to ORF1ab. Here we report a statistically significant association between viral load and disease severity, a high viral load being associated with worse clinical prognosis, independently of several previously identified risk factors such as age, sex, hypertension, cardiovascular disease, diabetes, obesity and lung disease (asthma and chronic obstructive pulmonary disease). The data presented here reinforce viral load as a potential biomarker for predicting disease severity in SARS-CoV-2-infected patients. It is also an important parameter in viral evolution since it relates to the numbers and types of variant genomes present in a viral population, a potential determinant of disease progression.
-
-
-
Prevalence and molecular characteristics of feline coronavirus in southwest China from 2017 to 2020
Qun Zhou, Yan Li, Jian Huang, Nengsheng Fu, Xin Song, Xue Sha and Bin ZhangFeline coronavirus (FCoV) is the causative agent of feline infectious peritonitis and diarrhoea in kittens worldwide. In this study, a total of 173 feline diarrhoeal faecal and ascetic samples were collected from 15 catteries and six veterinary hospitals in southwest China from 2017 to 2020. FCoV was detected in 80.35 % (139/173) of the samples using the RT-nPCR method; these included infections with 122 type I FCoV and 57 type II FCoV. Interestingly, 51 cases had co-infection with types I and II, the first such report in mainland China. To further analyse the genetic diversity of FCoV, we amplified 23 full-length spike (S) genes, including 18 type I and five type II FCoV. The type I FCoV and type II FCoV strains shared 85.5–98.7% and 97.4–98.9% nucleotide (nt) sequence identities between one another, respectively. The N-terminal domain (NTD) of 23 FCoV strains showed a high degree of variation (73.6–80.3 %). There was six type I FCoV strains with two amino acid insertions (159HL160) in the NTD. In addition, 18 strains of type I FCoV belonged to the Ie cluster, and five strains of type II FCoV were in the IIb cluster based on phylogenetic analysis. Notably, it was first time that two type I FCoV strains had recombination in the NTD, and the recombination regions was located 140–857 nt of the S gene. This study constitutes a systematic investigation of the current infection status and molecular characteristics of FCoV in southwest China.
-
-
-
Absence of SARS-CoV-2 in the air and on the surfaces within the school environment
More LessTo the best of our knowledge to date there are no scientific studies specifically investigating whether the SARS-CoV-2 virus is present in the air or on the various surfaces in the school environment. The aim of this study was to determine if SARS-CoV-2 is present on various high touch surfaces and in the air across the elementary, middle and high schools in the Chester County of Pennsylvania, USA. One hundred and fifty surface swab samples and 45 air samples were analysed for the presence of the virus. All the samples tested were negative for the presence of SARS-CoV-2. The results indicate that the spread of the virus through contact and through air in the school buildings across the USA is highly unlikely.
-
-
-
Sample collection and transport strategies to enhance yield, accessibility, and biosafety of COVID-19 RT-PCR testing
Introduction. Non-invasive sample collection and viral sterilizing buffers have independently enabled workflows for more widespread COVID-19 testing by reverse-transcriptase polymerase chain reaction (RT-PCR).
Gap statement. The combined use of sterilizing buffers across non-invasive sample types to optimize sensitive, accessible, and biosafe sampling methods has not been directly and systematically compared.
Aim. We aimed to evaluate diagnostic yield across different non-invasive samples with standard viral transport media (VTM) versus a sterilizing buffer eNAT- (Copan diagnostics Murrieta, CA) in a point-of-care diagnostic assay system.
Methods. We prospectively collected 84 sets of nasal swabs, oral swabs, and saliva, from 52 COVID-19 RT-PCR-confirmed patients, and nasopharyngeal (NP) swabs from 37 patients. Nasal swabs, oral swabs, and saliva were placed in either VTM or eNAT, prior to testing with the Xpert Xpress SARS-CoV-2 (Xpert). The sensitivity of each sampling strategy was compared using a composite positive standard.
Results. Swab specimens collected in eNAT showed an overall superior sensitivity compared to swabs in VTM (70 % vs 57 %, P=0.0022). Direct saliva 90.5 %, (95 % CI: 82 %, 95 %), followed by NP swabs in VTM and saliva in eNAT, was significantly more sensitive than nasal swabs in VTM (50 %, P<0.001) or eNAT (67.8 %, P=0.0012) and oral swabs in VTM (50 %, P<0.0001) or eNAT (58 %, P<0.0001). Saliva and use of eNAT buffer each increased detection of SARS-CoV-2 with the Xpert; however, no single sample matrix identified all positive cases.
Conclusion. Saliva and eNAT sterilizing buffer can enhance safe and sensitive detection of COVID-19 using point-of-care GeneXpert instruments.
-
-
-
Bloodstream infection by Saccharomyces cerevisiae in a COVID-19 patient receiving probiotic supplementation in the ICU in Brazil
More LessCare-related infections (CRIs) have a negative impact on the morbidity and mortality of patients in intensive care. Among them, fungal infections (e.g. Candida spp. and Aspergillus spp.) have high mortality in critically ill patients, particularly those with acute respiratory distress syndrome (ARDS) and immunosuppression. Coronavirus disease 2019 (COVID-19) causes severe respiratory changes and deregulation of the immune system. Here, we describe a case of fungal infection in an intensive care unit (ICU) patient with COVID-19 caused by Saccharomyces cerevisiae, a yeast widely used in the baking and wine production industries. It is also used as a probiotic, both for prevention and as adjunctive therapy in patients with diarrhoea. The patient was admitted to the ICU with a diagnosis of COVID-19, respiratory failure, complications of ARDS and renal failure, and was being treated with antibiotics and vasoactive amines. Later, the patient had diarrhoea and, after supplementation with Saccharomyces, he developed a bloodstream infection with Saccharomyces. The patient died after 61 days of hospitalization due to thrombocytopenia and bleeding. This case report suggests avoiding the use of probiotics in intensive care patients under the administration of antibiotics and amines, and with damage to the intestinal mucosa and immunodeficiency caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), since these factors could favour the translocation of fungi.
-
-
-
Performance comparison of micro-neutralization assays based on surrogate SARS-CoV-2 and WT SARS-CoV-2 in assessing virus-neutralizing capacity of anti-SARS-CoV-2 antibodies
We compared neutralization assays using either the wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus or surrogate neutralization markers, using characterized sera. We found the results of the neutralization assays 75 % concordant overall and 80 % concordant for samples with high antibody levels. This demonstrates that commercial surrogate SARS-CoV-2 assays offer the potential to assess anti-SARS-CoV-2 antibodies’ neutralizing capacity outside CL-3 laboratory containment.
-
-
-
Effect of multiple freeze–thaw cycles on the detection of anti-SARS-CoV-2 IgG antibodies
Several studies have investigated the effect of repeated freeze–thaw (F/T) cycles on RNA detection for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, no data are available regarding the effect of repeated F/T cycles on SARS-CoV-2 antibody detection in serum. We investigated the effect of multiple F/T cycles on anti-SARS-CoV-2 IgG detection using an ELISA test targeting the nucleocapsid antibodies. Ten positive and 1 negative SARS-CoV-2 IgG sera from 11 participants, in replicates of 5, were subjected to a total of 16 F/T cycles and stored at 4 °C until tested by ELISA. Statistical analysis was performed to test for F/T cycle effect. None of the 10 positive sera became negative after 16 F/T cycles. There was no significant difference in the OD average reading between the first and last F/T cycles, except for one serum with a minimal decline in the OD. The random effect linear regression of log (OD) on the number of cycles showed no significant trend, with a slope consistent with zero (B=−0.0001; 95 % CI −0.0008; 0.0006; P-value=0.781). These results suggest that multiple F/T cycles had no effect on the ability of the ELISA assay to detect SARS-CoV-2 IgG antibodies.
-
-
-
Immunogenicity after the first dose of the BNT162b2 mRNA Covid-19 vaccine: real-world evidence from Greek healthcare workers
Real-world data regarding the effectiveness, safety and immunogenicity of the Pfizer-BioNTech BNT162b2 mRNA vaccine are accumulating in the literature, suggesting that this vaccine generates high titres of S1-binding IgG antibodies that exhibit potent virus neutralization capacity. This is the first phase IV immunogenicity study to recruit a large number of Greek healthcare workers (n=425) including 63 previously-infected subjects. We measured titres of neutralizing IgGs against the receptor-binding domain of the S1 subunit of the spike protein of SARS-CoV-2 14 days post-immunization with the first dose, employing the SARS-CoV-2 IgG II Quant assay. A total of 92.24 % of our study cohort received a positive assay outcome and titres varied with age. Post-hoc analysis revealed that although titres did not significantly differ among participants aged 20–49 years, a significant decline was marked in the age group of 50–59 years, which was further accentuated in subjects aged over 60. Antibody titres escalated significantly among the previously-infected, indicating the potential booster effect of the first dose in that group.
-
-
-
Pan-drug resistant Providencia rettgeri contributing to a fatal case of COVID-19
Following prolonged hospitalization that included broad-spectrum antibiotic exposure, a strain of Providencia rettgeri was cultured from the blood of a patient undergoing extracorporeal membrane oxygenation treatment for hypoxic respiratory failure due to COVID-19. The strain was resistant to all antimicrobials tested including the novel siderophore cephalosporin, cefiderocol. Whole genome sequencing detected ten antimicrobial resistance genes, including the metallo-β-lactamase bla NDM-1, the extended-spectrum β-lactamase bla PER-1, and the rare 16S methyltransferase rmtB2.
-
-
-
Validation of saliva sampling as an alternative to oro-nasopharyngeal swab for detection of SARS-CoV-2 using unextracted rRT-PCR with the Allplex 2019-nCoV assay
Introduction. The current severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) pandemic has stressed the global supply chain for specialized equipment, including flocked swabs.
Hypothesis. Saliva could be a potential alternative specimen source for diagnosis of SARS-CoV-2 infection by reverse-transcriptase PCR (RT-PCR).
Aim. To compare the detection efficiency of SARS-CoV-2 RNA in saliva and oro-nasopharyngeal swab (ONPS) specimens.
Methodology. Patients recruited from hospital provided paired saliva and ONPS specimens. We performed manual or automated RT-PCR with prior proteinase K treatment without RNA extraction using the Seegene Allplex 2019 nCoV assay.
Results. Of the 773 specimen pairs, 165 (21.3 %) had at least one positive sample. Additionally, 138 specimens tested positive by both sampling methods. Fifteen and 12 cases were detected only by nasopharyngeal swab and saliva, respectively. The sensitivity of ONPS (153/165; 92.7 %; 95 % CI: 88.8–96.7) was similar to that of saliva (150/165; 90.9 %; 95 % CI: 86.5–95.3; P=0.5). In patients with symptoms for ≤ 10 days, the sensitivity of ONPS (118/126; 93.7 %; 95 % CI: 89.4–97.9) was similar to that of saliva (122/126; 96.8 %; 95 % CI: 93.8–99.9 %; P=0.9). However, the sensitivity of ONPS (20/22; 95.2 %; 95 % CI: 86.1–100) was higher than that of saliva (16/22; 71.4 %; 95 % CI: 52.1–90.8) in patients with symptoms for more than 10 days.
Conclusions. Saliva sampling is an acceptable alternative to ONPS for diagnosing SARS-CoV-2 infection in symptomatic individuals displaying symptoms for ≤ 10 days. These results reinforce the need to expand the use of saliva samples, which are self-collected and do not require swabs.
-
-
-
Combined computational and cellular screening identifies synergistic inhibition of SARS-CoV-2 by lenvatinib and remdesivir
Rapid repurposing of existing drugs as new therapeutics for COVID-19 has been an important strategy in the management of disease severity during the ongoing SARS-CoV-2 pandemic. Here, we used high-throughput docking to screen 6000 compounds within the DrugBank library for their potential to bind and inhibit the SARS-CoV-2 3 CL main protease, a chymotrypsin-like enzyme that is essential for viral replication. For 19 candidate hits, parallel in vitro fluorescence-based protease-inhibition assays and Vero-CCL81 cell-based SARS-CoV-2 replication-inhibition assays were performed. One hit, diclazuril (an investigational anti-protozoal compound), was validated as a SARS-CoV-2 3 CL main protease inhibitor in vitro (IC50 value of 29 µM) and modestly inhibited SARS-CoV-2 replication in Vero-CCL81 cells. Another hit, lenvatinib (approved for use in humans as an anti-cancer treatment), could not be validated as a SARS-CoV-2 3 CL main protease inhibitor in vitro, but serendipitously exhibited a striking functional synergy with the approved nucleoside analogue remdesivir to inhibit SARS-CoV-2 replication, albeit this was specific to Vero-CCL81 cells. Lenvatinib is a broadly-acting host receptor tyrosine kinase (RTK) inhibitor, but the synergistic effect with remdesivir was not observed with other approved RTK inhibitors (such as pazopanib or sunitinib), suggesting that the mechanism-of-action is independent of host RTKs. Furthermore, time-of-addition studies revealed that lenvatinib/remdesivir synergy probably targets SARS-CoV-2 replication subsequent to host-cell entry. Our work shows that combining computational and cellular screening is a means to identify existing drugs with repurposing potential as antiviral compounds. Future studies could be aimed at understanding and optimizing the lenvatinib/remdesivir synergistic mechanism as a therapeutic option.
-
-
-
Acceptable performance of the Abbott ID NOW among symptomatic individuals with confirmed COVID-19
Introduction. The ID NOW is FDA approved for the detection of SARS-CoV-2 in symptomatic individuals within the first 7 days of symptom onset for COVID-19 if tested within 1 h of specimen collection.
Gap statement. Clinical data on the performance of the ID NOW are limited, with many studies varying in their study design and/or having small sample size.
Aim. In this study we aimed to determine the clinical performance of the ID NOW compared to conventional RT-PCR testing.
Methodology. Adults with COVID-19 in the community or hospital were recruited into the study. Paired throat swabs were collected, with one throat swab transported immediately in an empty sterile tube to the laboratory for ID NOW testing, and the other transported in universal transport media and tested by an in-house SARS-CoV-2 RT-PCR assay targeting the E gene.
Results. In total, 133 individuals were included in the study; 129 samples were positive on either the ID NOW and/or RT-PCR. Assuming any positive result on either assay represents a true positive, positive per cent agreement (PPA) of the ID NOW compared to RT-PCR with 95 % confidence intervals was 89.1 % (82.0–94.1%) and 91.6 % (85.1–95.9%), respectively. When analysing individuals with symptom duration ≤7 days and who had the ID NOW performed within 1 h (n=62), ID NOW PPA increased to 98.2 %.
Conclusion. Results from the ID NOW were reliable, especially when adhering to the manufacturer’s recommendations for testing.
-
-
-
Network pharmacology and molecular docking analysis on mechanisms of Tibetan Hongjingtian (Rhodiola crenulata) in the treatment of COVID-19
Introduction. Coronavirus disease 2019 (COVID-19) is a highly contagious disease and ravages the world.
Hypothesis/Gap Statement. We proposed that R. crenulata might have potential value in the treatment of COVID-19 patients by regulating the immune response and inhibiting cytokine storm.
Aim. We aimed to explore the potential molecular mechanism for Rhodiola crenulata (R. crenulata), against the immune regulation of COVID-19, and to provide a referenced candidate Tibetan herb (R. crenulata) to overcome COVID-19.
Methodology. Components and targets of R. crenulata were retrieved from the TCMSP database. GO analysis and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment were built by R bioconductor package to explore the potential biological effects for targets of R. crenulata. The R. crenulata-compound-target network, target pathway network and protein–protein interaction (PPI) network were constructed using Cytoscape 3.3.0. Autodock 4.2 and Discovery Studio software were applied for molecular docking.
Result. Four bioactive components (quercetin, kaempferol, kaempferol-3-O-α-l-rhamnoside and tamarixetin) and 159 potential targets of R. crenulata were identified from the TCMSP database. The result of GO annotation and KEGG-pathway-enrichment analyses showed that target genes of R. crenulata were associated with inflammatory response and immune-related signalling pathways, especially IL-17 signalling pathway, and TNF signalling pathway. Targets-pathway network and PPI network showed that IL-6, IL-1B and TNF-α were considered to be hub genes. Molecular docking showed that core compound (quercetin) had a certain affinity with IL-1β, IL-6 and TNF-α.
Conclusion. R. crenulata might play an anti-inflammatory and immunoregulatory role in the cytokine storm of COVID-19.
-
-
-
Genomic epidemiological analysis of SARS-CoV-2 household transmission
Family clusters have contributed significantly to the onward spread of SARS-CoV-2. However, the dynamics of viral transmission in this setting remain incompletely understood. We describe the clinical and viral-phylogenetic characteristics of a family cluster of SARS-CoV-2 infections with a high attack rate, and explore how whole-genome sequencing (WGS) can inform outbreak investigations in this context. In this cluster, the first symptomatic case was a 22-month-old infant who developed rhinorrhoea and sneezing 2 days prior to attending a family gathering. Subsequently, seven family members in attendance at this event were diagnosed with SARS-CoV-2 infections, including the infant described. WGS revealed indistinguishable SARS-CoV-2 genomes recovered from the adults at the gathering, which were closely related genetically to B.1 lineage viruses circulating in the local community. However, a divergent viral sub-lineage was recovered from the infant and another child, each harbouring a distinguishing spike substitution (N30S). This suggested that the infant was unlikely to be the primary case, despite displaying symptoms first, and additional analysis of her nasopharyngeal swab revealed a picornavirus co-infection to account for her early symptoms. Our findings demonstrate how WGS can elucidate the transmission dynamics of SARS-CoV-2 infections within household clusters and provide useful information to support outbreak investigations. Additionally, our description of SARS-CoV-2 viral lineages and notable variants circulating in Ireland to date provides an important genomic-epidemiological baseline in the context of vaccine introduction.
-
-
-
The value of repeat patient testing for SARS-CoV-2: real-world experience during the first wave
More LessIntroduction. Reports of false-negative quantitative reverse transcription PCR (RT-qPCR) results from patients with high clinical suspension for coronavirus disease 2019 (COVID-19), suggested that a negative result produced by a nucleic acid amplification assays (NAAs) did not always exclude the possibility of COVID-19 infection. Repeat testing has been used by clinicians as a strategy in an to attempt to improve laboratory diagnosis of COVID-19 and overcome false-negative results in particular.
Aim. To investigate whether repeat testing is helpful for overcoming false-negative results.
Methods. We retrospectively reviewed our experience with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing, focusing on the yield of repeat patient testing for improving SARS-CoV-2 detection by NAA.
Results. We found that the yield from using repeat testing to identify false-negative patients was low. When the first test produced a negative result, only 6 % of patients tested positive by the second test. The yield decreased to 1.7 and then 0 % after the third and fourth tests, respectively. When comparing the results produced by three assays, the Centers for Disease Control and Prevention (CDC) SARS CoV-2 RT-qPCR panel, Xpert Xpress CoV-2 and ID NOW COVID-19, the ID NOW assay was associated with the highest number of patients who tested negative initially but positive on repeat testing. The CDC SARS CoV-2 RT-qPCR panel produced the highest number of indeterminate results. Repeat testing resolved more than 90 % of indeterminate/invalid results.
Conclusions. The yield from using repeat testing to identify false-negative patients was low. Repeat testing was best used for resolving indeterminate/invalid results.
-
-
-
Retrospective screening of routine respiratory samples revealed undetected community transmission and missed intervention opportunities for SARS-CoV-2 in the United Kingdom
Joseph G. Chappell, Theocharis Tsoleridis, Gemma Clark, Louise Berry, Nadine Holmes, Christopher Moore, Matthew Carlile, Fei Sang, Bisrat J. Debebe, Victoria Wright, William L. Irving, Brian J. Thomson, Timothy C. J. Boswell, Iona Willingham, Amelia Joseph, Wendy Smith, Manjinder Khakh, Vicki M. Fleming, Michelle M. Lister, Hannah C. Howson-Wells, Edward C. Holmes, Matthew W. Loose, Jonathan K. Ball, C. Patrick McClure and on behalf of the COG-UK consortiumIn the early phases of the SARS coronavirus type 2 (SARS-CoV-2) pandemic, testing focused on individuals fitting a strict case definition involving a limited set of symptoms together with an identified epidemiological risk, such as contact with an infected individual or travel to a high-risk area. To assess whether this impaired our ability to detect and control early introductions of the virus into the UK, we PCR-tested archival specimens collected on admission to a large UK teaching hospital who retrospectively were identified as having a clinical presentation compatible with COVID-19. In addition, we screened available archival specimens submitted for respiratory virus diagnosis, and dating back to early January 2020, for the presence of SARS-CoV-2 RNA. Our data provides evidence for widespread community circulation of SARS-CoV-2 in early February 2020 and into March that was undetected at the time due to restrictive case definitions informing testing policy. Genome sequence data showed that many of these early cases were infected with a distinct lineage of the virus. Sequences obtained from the first officially recorded case in Nottinghamshire - a traveller returning from Daegu, South Korea – also clustered with these early UK sequences suggesting acquisition of the virus occurred in the UK and not Daegu. Analysis of a larger sample of sequences obtained in the Nottinghamshire area revealed multiple viral introductions, mainly in late February and through March. These data highlight the importance of timely and extensive community testing to prevent future widespread transmission of the virus.
-
-
-
Differential role of sphingomyelin in influenza virus, rhinovirus and SARS-CoV-2 infection of Calu-3 cells
Host cell lipids play a pivotal role in the pathogenesis of respiratory virus infection. However, a direct comparison of the lipidomic profile of influenza virus and rhinovirus infections is lacking. In this study, we first compared the lipid profile of influenza virus and rhinovirus infection in a bronchial epithelial cell line. Most lipid features were downregulated for both influenza virus and rhinovirus, especially for the sphingomyelin features. Pathway analysis showed that sphingolipid metabolism was the most perturbed pathway. Functional study showed that bacterial sphingomyelinase suppressed influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, but promoted rhinovirus replication. These findings suggest that sphingomyelin pathway can be a potential target for antiviral therapy, but should be carefully evaluated as it has opposite effects on different respiratory viruses. Furthermore, the differential effect of sphingomyelinase on rhinovirus and influenza virus may explain the interference between rhinovirus and influenza virus infection.
-
-
-
Human convalescent plasma protects K18-hACE2 mice against severe respiratory disease
SARS-CoV-2 is the causative agent of COVID-19 and human infections have resulted in a global health emergency. Small animal models that reproduce key elements of SARS-CoV-2 human infections are needed to rigorously screen candidate drugs to mitigate severe disease and prevent the spread of SARS-CoV-2. We and others have reported that transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the Keratin 18 (K18) promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge. Here we report that some infected mice that survive challenge have residual pulmonary damages and persistent brain infection on day 28 post-infection despite the presence of anti-SARS-COV-2 neutralizing antibodies. Because of the hypersensitivity of K18-hACE2 mice to SARS-CoV-2 and the propensity of virus to infect the brain, we sought to determine if anti-infective biologics could protect against disease in this model system. We demonstrate that anti-SARS-CoV-2 human convalescent plasma protects K18-hACE2 against severe disease. All control mice succumbed to disease by day 7; however, all treated mice survived infection without observable signs of disease. In marked contrast to control mice, viral antigen and lesions were reduced or absent from lungs and absent in brains of antibody-treated mice. Our findings support the use of K18-hACE2 mice for protective efficacy studies of anti-SARS-CoV-2 medical countermeasures (MCMs). They also support the use of this system to study SARS-CoV-2 persistence and host recovery.
-
-
-
SARS-CoV-2 replicon for high-throughput antiviral screening
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which is highly pathogenic and classified as a biosafety level 3 (BSL-3) agent, has greatly threatened global health and efficacious antivirals are urgently needed. The high requirement of facilities to manipulate the live virus has limited the development of antiviral study. Here, we constructed a reporter replicon of SARS-CoV-2, which can be handled in a BSL-2 laboratory. The Renilla luciferase activity effectively reflected the transcription and replication levels of the replicon genome. We identified the suitability of the replicon in antiviral screening using the known inhibitors, and thus established the replicon-based high-throughput screening (HTS) assay for SARS-CoV-2. The application of the HTS assay was further validated using a few hit natural compounds, which were screened out in a SARS-CoV-2 induced cytopathic-effect-based HTS assay in our previous study. This replicon-based HTS assay will be a safe platform for SARS-CoV-2 antiviral screening in a BSL-2 laboratory without the live virus.
-
-
-
Re-opening hairdressing salons, barber shops and gyms following COVID-19 lockdown: reducing risks from Legionella species through successful domestic steam disinfection of showerheads
More LessGiven the importance of disinfecting showerheads from Legionella species and the lack of instructions as to how to successfully achieve this, the aim of this study was to examine the ability of domestic steam disinfection to successfully disinfect showerheads from Legionella species. Steam disinfection of Legionella pneumophila [n=3; L. pneumophila serogroup 2–15 (wildtype environmental water isolate); L. pneumophila serogroup 1 NCTC11192 (reference strain); L. pneumophila serogroup 1 (wildtype environmental water isolate)], L. erythra (wildtype environmental water isolate) and L. bozemanii CRM11368M (reference strain) were examined in this study. Steam disinfection employing a baby bottle steam disinfector device eradicated all Legionella organisms tested. Steam disinfection, when performed properly under the manufacturer’s instructions, offers a relatively inexpensive, simple, versatile and widely available technology for the elimination of Legionella species from contaminated showerheads. We therefore advocate the employment of such devices to regularly disinfect showerheads and shower tubing in hairdressing salons, barber shops and gyms, as a critical control in the elimination of these organisms from these sources, thereby enhancing customer/client/staff safety.
-
-
-
Effective in vitro inactivation of SARS-CoV-2 by commercially available mouthwashes
Infectious SARS-CoV-2 can be recovered from the oral cavities and saliva of COVID-19 patients with potential implications for disease transmission. Reducing viral load in patient saliva using antiviral mouthwashes may therefore have a role as a control measure in limiting virus spread, particularly in dental settings. Here, the efficacy of SARS-CoV-2 inactivation by seven commercially available mouthwashes with a range of active ingredients were evaluated in vitro. We demonstrate ≥4.1 to ≥5.5 log10 reduction in SARS-CoV-2 titre following a 1 min treatment with commercially available mouthwashes containing 0.01–0.02 % stabilised hypochlorous acid or 0.58 % povidone iodine, and non-specialist mouthwashes with both alcohol-based and alcohol-free formulations designed for home use. In contrast, products containing 1.5 % hydrogen peroxide or 0.2 % chlorhexidine gluconate were ineffective against SARS-CoV-2 in these tests. This study contributes to the growing body of evidence surrounding virucidal efficacy of mouthwashes/oral rinses against SARS-CoV-2, and has important applications in reducing risk associated with aerosol generating procedures in dentistry and potentially for infection control more widely.
-
-
-
Investigative study into whether an insect repellent has virucidal activity against SARS-CoV-2
A small-scale study with Mosi-guard Natural spray, an insect repellent containing Citriodiol, was performed to determine if it has virucidal activity against SARS-CoV-2. A liquid test examined the activity of the insect repellent and the individual components for virucidal activity. A surface contact test looked at the activity of the insect repellent when impregnated on a latex surface as a synthetic skin for potential topical prophylactic application. Both Mosi-guard Natural spray and Citriodiol, as well as other components of the repellent, had virucidal activity in the liquid contact test. On a latex surface used to simulate treated skin, the titre of SARS-CoV-2 was less over time on the Mosi-guard Natural-treated surface but virus was still recovered.
-
-
-
SARS-CoV-2 one year on: evidence for ongoing viral adaptation
More LessSARS-CoV-2 is thought to have originated in the human population from a zoonotic spillover event. Infection in humans results in a variety of outcomes ranging from asymptomatic cases to the disease COVID-19, which can have significant morbidity and mortality, with over two million confirmed deaths worldwide as of January 2021. Over a year into the pandemic, sequencing analysis has shown that variants of SARS-CoV-2 are being selected as the virus continues to circulate widely within the human population. The predominant drivers of genetic variation within SARS-CoV-2 are single nucleotide polymorphisms (SNPs) caused by polymerase error, potential host factor driven RNA modification, and insertion/deletions (indels) resulting from the discontinuous nature of viral RNA synthesis. While many mutations represent neutral ‘genetic drift’ or have quickly died out, a subset may be affecting viral traits such as transmissibility, pathogenicity, host range, and antigenicity of the virus. In this review, we summarise the current extent of genetic change in SARS-CoV-2, particularly recently emerging variants of concern, and consider the phenotypic consequences of this viral evolution that may impact the future trajectory of the pandemic.
-
-
-
The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has caused a pandemic with tens of millions of cases and more than a million deaths. The infection causes COVID-19, a disease of the respiratory system of divergent severity. No treatment exists. Epigallocatechin-3-gallate (EGCG), the major component of green tea, has several beneficial properties, including antiviral activities. Therefore, we examined whether EGCG has antiviral activity against SARS-CoV-2. EGCG blocked not only the entry of SARS-CoV-2, but also MERS- and SARS-CoV pseudotyped lentiviral vectors and inhibited virus infections in vitro. Mechanistically, inhibition of the SARS-CoV-2 spike–receptor interaction was observed. Thus, EGCG might be suitable for use as a lead structure to develop more effective anti-COVID-19 drugs.
-
-
-
Inactivation of SARS-CoV-2 on surfaces and in solution with Virusend (TX-10), a novel disinfectant
More LessUntil an effective vaccine against SARS-CoV-2 is available on a widespread scale, the control of the COVID-19 pandemic is reliant upon effective pandemic control measures. The ability of SARS-CoV-2 to remain viable on surfaces and in aerosols, means indirect contact transmission can occur and there is an opportunity to reduce transmission using effective disinfectants in public and communal spaces. Virusend (TX-10), a novel disinfectant, has been developed as a highly effective disinfectant against a range of microbial agents. Here we investigate the ability of Virusend to inactivate SARS-CoV-2. Using surface and solution inactivation assays, we show that Virusend is able to reduce SARS-CoV-2 viral titre by 4 log10 p.f.u. ml−1 within 1 min of contact. Ensuring disinfectants are highly effective against SARS-CoV-2 is important in eliminating environmental sources of the virus to control the COVID-19 pandemic.
-
-
-
Large-scale sequencing of SARS-CoV-2 genomes from one region allows detailed epidemiology and enables local outbreak management
Andrew J. Page, Alison E. Mather, Thanh Le-Viet, Emma J. Meader, Nabil-Fareed Alikhan, Gemma L. Kay, Leonardo de Oliveira Martins, Alp Aydin, David J. Baker, Alexander J. Trotter, Steven Rudder, Ana P. Tedim, Anastasia Kolyva, Rachael Stanley, Muhammad Yasir, Maria Diaz, Will Potter, Claire Stuart, Lizzie Meadows, Andrew Bell, Ana Victoria Gutierrez, Nicholas M. Thomson, Evelien M. Adriaenssens, Tracey Swingler, Rachel A. J. Gilroy, Luke Griffith, Dheeraj K. Sethi, Dinesh Aggarwal, Colin S. Brown, Rose K. Davidson, Robert A. Kingsley, Luke Bedford, Lindsay J. Coupland, Ian G. Charles, Ngozi Elumogo, John Wain, Reenesh Prakash, Mark A. Webber, S. J. Louise Smith, Meera Chand, Samir Dervisevic, Justin O’Grady and The COVID-19 Genomics UK (COG-UK) ConsortiumThe COVID-19 pandemic has spread rapidly throughout the world. In the UK, the initial peak was in April 2020; in the county of Norfolk (UK) and surrounding areas, which has a stable, low-density population, over 3200 cases were reported between March and August 2020. As part of the activities of the national COVID-19 Genomics Consortium (COG-UK) we undertook whole genome sequencing of the SARS-CoV-2 genomes present in positive clinical samples from the Norfolk region. These samples were collected by four major hospitals, multiple minor hospitals, care facilities and community organizations within Norfolk and surrounding areas. We combined clinical metadata with the sequencing data from regional SARS-CoV-2 genomes to understand the origins, genetic variation, transmission and expansion (spread) of the virus within the region and provide context nationally. Data were fed back into the national effort for pandemic management, whilst simultaneously being used to assist local outbreak analyses. Overall, 1565 positive samples (172 per 100 000 population) from 1376 cases were evaluated; for 140 cases between two and six samples were available providing longitudinal data. This represented 42.6 % of all positive samples identified by hospital testing in the region and encompassed those with clinical need, and health and care workers and their families. In total, 1035 cases had genome sequences of sufficient quality to provide phylogenetic lineages. These genomes belonged to 26 distinct global lineages, indicating that there were multiple separate introductions into the region. Furthermore, 100 genetically distinct UK lineages were detected demonstrating local evolution, at a rate of ~2 SNPs per month, and multiple co-occurring lineages as the pandemic progressed. Our analysis: identified a discrete sublineage associated with six care facilities; found no evidence of reinfection in longitudinal samples; ruled out a nosocomial outbreak; identified 16 lineages in key workers which were not in patients, indicating infection control measures were effective; and found the D614G spike protein mutation which is linked to increased transmissibility dominates the samples and rapidly confirmed relatedness of cases in an outbreak at a food processing facility. The large-scale genome sequencing of SARS-CoV-2-positive samples has provided valuable additional data for public health epidemiology in the Norfolk region, and will continue to help identify and untangle hidden transmission chains as the pandemic evolves.
-
-
-
Mycoplasma pneumoniae co-infection with SARS-CoV-2: A case report
We report co-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Mycoplasma pneumoniae in a patient with pneumonia in India. Atypical bacterial pathogens causing community-acquired pneumonia may share similar clinical presentations and radiographic features with SARS-CoV-2 making a thorough differential diagnosis essential. The co-infection of SARS-CoV-2 and M. pneumoniae is infrequently reported in the literature. Broader testing for common respiratory pathogens should be performed in severe COVID-19 cases to rule out other concurrent infections. Early identification of co-existing respiratory pathogens could provide pathogen-directed therapy, and can save patient lives during the ongoing COVID-19 outbreak.
-
-
-
A comprehensive profile of genomic variations in the SARS-CoV-2 isolates from the state of Telangana, India
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 has rapidly turned into a pandemic, infecting millions and causing 1 157 509 (as of 27 October 2020) deaths across the globe. In addition to studying the mode of transmission and evasion of host immune system, analysing the viral mutational landscape constitutes an area under active research. The latter is expected to impart knowledge on the emergence of different clades, subclades, viral protein functions and protein–protein and protein–RNA interactions during replication/transcription cycle of virus and response to host immune checkpoints. In this study, we have attempted to bring forth the viral genomic variants defining the major clade(s) as identified from samples collected from the state of Telangana, India. We further report a comprehensive draft of all genomic variations (including unique mutations) present in SARS-CoV-2 strain in the state of Telangana. Our results reveal the presence of two mutually exclusive subgroups defined by specific variants within the dominant clade present in the population. This work attempts to bridge the critical gap regarding the genomic landscape and associate mutations in SARS-CoV-2 from a highly infected southern region of India, which was lacking to date.
-
-
-
A genetic element in the SARS-CoV-2 genome is shared with multiple insect species
More LessSARS-CoV-2 is a member of the subgenus Sarbecovirus and thus contains the genetic element s2m. We have extensively mined nucleotide data in GenBank in order to obtain a comprehensive list of s2m sequences both in the four virus families where s2m has previously been described and in other groups of organisms. Surprisingly, there seems to be a xenologue of s2m in a large number of insect species. The function of s2m is unknown, but our data show a very high degree of sequence conservation both in insects and in viruses and that the version of s2m found in SARS-CoV-2 has unique features, not seen in any other virus or insect strains.
-
-
-
Assessment of inactivation procedures for SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), presents a challenge to laboratorians and healthcare workers around the world. Handling of biological samples from individuals infected with the SARS-CoV-2 virus requires strict biosafety measures. Within the laboratory, non-propagative work with samples containing the virus requires, at minimum, Biosafety Level-2 (BSL-2) techniques and facilities. Therefore, handling of SARS-CoV-2 samples remains a major concern in areas and conditions where biosafety for specimen handling is difficult to maintain, such as in rural laboratories or austere field testing sites. Inactivation through physical or chemical means can reduce the risk of handling live virus and increase testing ability especially in low-resource settings due to easier and faster sample processing. Herein we assess several chemical and physical inactivation techniques employed against SARS-CoV-2 isolates from Cambodia. This data demonstrates that all chemical (AVL, inactivating sample buffer and formaldehyde) and heat-treatment (56 and 98 °C) methods tested completely inactivated viral loads of up to 5 log10.
-
-
-
Hamster and ferret experimental infection with intranasal low dose of a single strain of SARS-CoV-2
Understanding the pathogenesis of the SARS-CoV-2 infection is key to developing preventive and therapeutic strategies against COVID-19, in the case of severe illness but also when the disease is mild. The use of appropriate experimental animal models remains central in the in vivo exploration of the physiopathology of infection and antiviral strategies. This study describes SARS-CoV-2 intranasal infection in ferrets and hamsters with low doses of low-passage SARS-CoV-2 clinical French isolate UCN19, describing infection levels, excretion, immune responses and pathological patterns in both animal species. Individual infection with 103 p.f.u. SARS-CoV-2 induced a more severe disease in hamsters than in ferrets. Viral RNA was detected in the lungs of hamsters but not of ferrets and in the brain (olfactory bulb and/or medulla oblongata) of both species. Overall, the clinical disease remained mild, with serological responses detected from 7 days and 10 days post-inoculation in hamsters and ferrets respectively. The virus became undetectable and pathology resolved within 14 days. The kinetics and levels of infection can be used in ferrets and hamsters as experimental models for understanding the pathogenicity of SARS-CoV-2, and testing the protective effect of drugs.
-
-
-
Targeting novel structural and functional features of coronavirus protease nsp5 (3CLpro, Mpro) in the age of COVID-19
More LessCoronavirus protease nsp5 (M pro , 3CL pro ) remains a primary target for coronavirus therapeutics due to its indispensable and conserved role in the proteolytic processing of the viral replicase polyproteins. In this review, we discuss the diversity of known coronaviruses, the role of nsp5 in coronavirus biology, and the structure and function of this protease across the diversity of known coronaviruses, and evaluate past and present efforts to develop inhibitors to the nsp5 protease with a particular emphasis on new and mostly unexplored potential targets of inhibition. With the recent emergence of pandemic SARS-CoV-2, this review provides novel and potentially innovative strategies and directions to develop effective therapeutics against the coronavirus protease nsp5.
-
-
-
Understanding the outcomes of COVID-19 – does the current model of an acute respiratory infection really fit?
More LessAlthough coronavirus disease 2019 (COVID-19) is regarded as an acute, resolving infection followed by the development of protective immunity, recent systematic literature review documents evidence for often highly prolonged shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory and faecal samples, periodic recurrence of PCR positivity in a substantial proportion of individuals and increasingly documented instances of reinfection associated with a lack of protective immunity. This pattern of infection is quite distinct from the acute/resolving nature of other human pathogenic respiratory viruses, such as influenza A virus and respiratory syncytial virus. Prolonged shedding of SARS-CoV-2 furthermore occurs irrespective of disease severity or development of virus-neutralizing antibodies. SARS-CoV-2 possesses an intensely structured RNA genome, an attribute shared with other human and veterinary coronaviruses and with other mammalian RNA viruses such as hepatitis C virus. These are capable of long-term persistence, possibly through poorly understood RNA structure-mediated effects on innate and adaptive host immune responses. The assumption that resolution of COVID-19 and the appearance of anti-SARS-CoV-2 IgG antibodies represents virus clearance and protection from reinfection, implicit for example in the susceptible–infected–recovered (SIR) model used for epidemic prediction, should be rigorously re-evaluated.
-
-
-
Detection of SARS-CoV-2 in saliva: implications for specimen transport and storage
Saliva has recently been proposed as a suitable specimen for the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Use of saliva as a diagnostic specimen may present opportunities for SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) testing in remote and low-resource settings. Determining the stability of SARS-CoV-2 RNA in saliva over time is an important step in determining optimal storage and transport times. We undertook an in vitro study to assess whether SARS-CoV-2 could be detected in contrived saliva samples. The contrived saliva samples comprised 10 ml pooled saliva spiked with gamma-irradiated SARS-CoV-2 to achieve a concentration of 2.58×104 copies ml SARS-CoV-2, which was subsequently divided into 2 ml aliquots comprising: (i) neat saliva; and a 1 : 1 dilution with (ii) normal saline; (iii) viral transport media, and (iv) liquid Amies medium. Contrived samples were made in quadruplicate, with two samples of each stored at either: (i) room temperature or (ii) 4 °C. SARS-CoV-2 was detected in all SARS-CoV-2 spiked samples at time point 0, day 1, 3 and 7 at both storage temperatures using the N gene RT-PCR assay and time point 0, day 1 and day 7 using the Xpert Xpress SARS-CoV-2 (Cepheid, Sunnyvale, USA) RT-PCR assay. The ability to detect SARS-CoV-2 in saliva over a 1 week period is an important finding that presents further opportunities for saliva testing as a diagnostic specimen for the diagnosis of SARS-CoV-2.
-
-
-
Predicting the recombination potential of severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged to cause widespread infections in humans. SARS-CoV-2 infections have been reported in the Kingdom of Saudi Arabia, where Middle East respiratory syndrome coronavirus (MERS-CoV) causes seasonal outbreaks with a case fatality rate of ~37 %. Here we show that there exists a theoretical possibility of future recombination events between SARS-CoV-2 and MERS-CoV RNA. Through computational analyses, we have identified homologous genomic regions within the ORF1ab and S genes that could facilitate recombination, and have analysed co-expression patterns of the cellular receptors for SARS-CoV-2 and MERS-CoV, ACE2 and DPP4, respectively, to identify human anatomical sites that could facilitate co-infection. Furthermore, we have investigated the likely susceptibility of various animal species to MERS-CoV and SARS-CoV-2 infection by comparing known virus spike protein–receptor interacting residues. In conclusion, we suggest that a recombination between SARS-CoV-2 and MERS-CoV RNA is possible and urge public health laboratories in high-risk areas to develop diagnostic capability for the detection of recombined coronaviruses in patient samples.
-
-
-
Identification of a SARS-like bat coronavirus that shares structural features with the spike glycoprotein receptor-binding domain of SARS-CoV-2
More LessSARS-CoV-2 is a recently emerged coronavirus that binds angiotensin-converting enzyme 2 (ACE2) for cell entry via its receptor-binding domain (RBD) on a surface-expressed spike glycoprotein. Studies show that despite its similarities to severe acute respiratory syndrome (SARS) coronavirus, there are critical differences in key RBD residues when compared to SARS-CoV-2. Here we present a short in silico study, showing that SARS-like bat coronavirus Rs3367 shares a high conservation with SARS-CoV-2 in important RBD residues for ACE2 binding: SARS-CoV-2’s Phe486, Thr500, Asn501 and Tyr505; implicated in receptor-binding strength and host-range determination. These features were not shared with other studied bat coronaviruses belonging to the betacoronavirus genus, including RaTG13, the closest reported bat coronavirus to SARS-CoV-2’s spike protein. Sequence and phylogeny analyses were followed by the computation of a reliable model of the RBD of SARS-like bat coronavirus Rs3367, which allowed structural insight of the conserved residues. Superimposition of this model on the SARS-CoV-2 ACE2-RBD complex revealed critical ACE2 contacts are also maintained. In addition, residue Asn488Rs3367 interacted with a previously defined pocket on ACE2 composed of Tyr41, Lys353 and Asp355. When compared to available SARS-CoV-2 crystal structure data, Asn501SARS-CoV-2 showed a different interaction with the ACE2 pocket. Taken together, this study offers molecular insights on RBD-receptor interactions with implications for vaccine design.
-
-
-
SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), emerged at the end of 2019 and by mid-June 2020 the virus had spread to at least 215 countries, caused more than 8 000 000 confirmed infections and over 450 000 deaths, and overwhelmed healthcare systems worldwide. Like severe acute respiratory syndrome coronavirus (SARS-CoV), which emerged in 2002 and caused a similar disease, SARS-CoV-2 is a betacoronavirus. Both viruses use human angiotensin-converting enzyme 2 (hACE2) as a receptor to enter cells. However, the SARS-CoV-2 spike (S) glycoprotein has a novel insertion that generates a putative furin cleavage signal and this has been postulated to expand the host range. Two low-passage (P) strains of SARS-CoV-2 (Wash1 : P4 and Munich : P1) were cultured twice in Vero E6 cells and characterized virologically. Sanger and MinION sequencing demonstrated significant deletions in the furin cleavage signal of Wash1 : P6 and minor variants in the Munich : P3 strain. Cleavage of the S glycoprotein in SARS-CoV-2-infected Vero E6 cell lysates was inefficient even when an intact furin cleavage signal was present. Indirect immunofluorescence demonstrated that the S glycoprotein reached the cell surface. Since the S protein is a major antigenic target for the development of neutralizing antibodies, we investigated the development of neutralizing antibody titres in serial serum samples obtained from COVID-19 human patients. These were comparable regardless of the presence of an intact or deleted furin cleavage signal. These studies illustrate the need to characterize virus stocks meticulously prior to performing either in vitro or in vivo pathogenesis studies.
-
-
-
A novel antiviral formulation inhibits a range of enveloped viruses
Some free fatty acids derived from milk and vegetable oils are known to have potent antiviral and antibacterial properties. However, therapeutic applications of short- to medium-chain fatty acids are limited by physical characteristics such as immiscibility in aqueous solutions. We evaluated a novel proprietary formulation based on an emulsion of short-chain caprylic acid, ViroSAL, for its ability to inhibit a range of viral infections in vitro and in vivo. In vitro, ViroSAL inhibited the enveloped viruses Epstein–Barr, measles, herpes simplex, Zika and orf parapoxvirus, together with Ebola, Lassa, vesicular stomatitis and severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) pseudoviruses, in a concentration- and time-dependent manner. Evaluation of the components of ViroSAL revealed that caprylic acid was the main antiviral component; however, the ViroSAL formulation significantly inhibited viral entry compared with caprylic acid alone. In vivo, ViroSAL significantly inhibited Zika and Semliki Forest virus replication in mice following the inoculation of these viruses into mosquito bite sites. In agreement with studies investigating other free fatty acids, ViroSAL had no effect on norovirus, a non-enveloped virus, indicating that its mechanism of action may be surfactant disruption of the viral envelope. We have identified a novel antiviral formulation that is of great interest for the prevention and/or treatment of a broad range of enveloped viruses, particularly those of the skin and mucosal surfaces.
-
-
-
A putative new SARS-CoV protein, 3c, encoded in an ORF overlapping ORF3a
More LessIdentification of the full complement of genes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a crucial step towards gaining a fuller understanding of its molecular biology. However, short and/or overlapping genes can be difficult to detect using conventional computational approaches, whereas high-throughput experimental approaches – such as ribosome profiling – cannot distinguish translation of functional peptides from regulatory translation or translational noise. By studying regions showing enhanced conservation at synonymous sites in alignments of SARS-CoV-2 and related viruses (subgenus Sarbecovirus) and correlating the results with the conserved presence of an open reading frame (ORF) and a plausible translation mechanism, a putative new gene – ORF3c – was identified. ORF3c overlaps ORF3a in an alternative reading frame. A recently published ribosome profiling study confirmed that ORF3c is indeed translated during infection. ORF3c is conserved across the subgenus Sarbecovirus, and encodes a 40–41 amino acid predicted transmembrane protein.
-
-
-
Antiviral and virucidal effects of curcumin on transmissible gastroenteritis virus in vitro
More LessEmerging coronaviruses represent serious threats to human and animal health worldwide, and no approved therapeutics are currently available. Here, we used Transmissible gastroenteritis virus (TGEV) as the alpha-coronavirus model, and investigated the antiviral properties of curcumin against TGEV. Our results demonstrated that curcumin strongly inhibited TGEV proliferation and viral protein expression in a dose-dependent manner. We also observed that curcumin exhibited direct virucidal abilities in a dose-, temperature- and time-dependent manner. Furthermore, time-of-addition assays showed that curcumin mainly acted in the early phase of TGEV replication. Notably, in an adsorption assay, curcumin at 40 µM resulted in a reduction in viral titres of 3.55 log TCID50 ml–1, indicating that curcumin possesses excellent inhibitory effects on the adsorption of TGEV. Collectively, we demonstrate for the first time that curcumin has virucidal activity and virtual inhibition against TGEV, suggesting that curcumin might be a candidate drug for effective control of TGEV infection.
-
-
-
Insights into SARS-CoV-2, the Coronavirus Underlying COVID-19: Recent Genomic Data and the Development of Reverse Genetics Systems
The emergence and rapid worldwide spread of a novel pandemic of acute respiratory disease – eventually named coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO) – across the human population has raised great concerns. It prompted a mobilization around the globe to study the underlying pathogen, a close relative of severe acute respiratory syndrome coronavirus (SARS-CoV) called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Numerous genome sequences of SARS-CoV-2 are now available and in-depth analyses are advancing. These will allow detailed characterization of sequence and protein functions, including comparative studies. Care should be taken when inferring function from sequence information alone, and reverse genetics systems can be used to unequivocally identify key features. For example, the molecular markers of virulence, host range and transmissibility of SARS-CoV-2 can be compared to those of related viruses in order to shed light on the biology of this emerging pathogen. Here, we summarize some recent insights from genomic studies and strategies for reverse genetics systems to generate recombinant viruses, which will be useful to investigate viral genome properties and evolution.
-
-
-
Multiple novel non-canonically transcribed sub-genomic mRNAs produced by avian coronavirus infectious bronchitis virus
Coronavirus sub-genomic mRNA (sgmRNA) synthesis occurs via a process of discontinuous transcription involving complementary transcription regulatory sequences (TRSs), one (TRS-L) encompassing the leader sequence of the 5′ untranslated region (UTR), and the other upstream of each structural and accessory gene (TRS-B). Several coronaviruses have an ORF located between the N gene and the 3′-UTR, an area previously thought to be non-coding in the Gammacoronavirus infectious bronchitis virus (IBV) due to a lack of a canonical TRS-B. Here, we identify a non-canonical TRS-B allowing for a novel sgmRNA relating to this ORF to be produced in several strains of IBV: Beaudette, CR88, H120, D1466, Italy-02 and QX. Interestingly, the potential protein produced by this ORF is prematurely truncated in the Beaudette strain. A single nucleotide deletion was made in the Beaudette strain allowing for the generation of a recombinant IBV (rIBV) that had the potential to express a full-length protein. Assessment of this rIBV in vitro demonstrated that restoration of the full-length potential protein had no effect on viral replication. Further assessment of the Beaudette-derived RNA identified a second non-canonically transcribed sgmRNA located within gene 2. Deep sequencing analysis of allantoic fluid from Beaudette-infected embryonated eggs confirmed the presence of both the newly identified non-canonically transcribed sgmRNAs and highlighted the potential for further yet unidentified sgmRNAs. This HiSeq data, alongside the confirmation of non-canonically transcribed sgmRNAs, indicates the potential of the coronavirus genome to encode a larger repertoire of genes than has currently been identified.
-
-
-
Zinc sulfate in combination with a zinc ionophore may improve outcomes in hospitalized COVID-19 patients
Introduction. COVID-19 has rapidly emerged as a pandemic infection that has caused significant mortality and economic losses. Potential therapies and prophylaxis against COVID-19 are urgently needed to combat this novel infection. As a result of in vitro evidence suggesting zinc sulphate may be efficacious against COVID-19, our hospitals began using zinc sulphate as add-on therapy to hydroxychloroquine and azithromycin.
Aim. To compare outcomes among hospitalized COVID-19 patients ordered to receive hydroxychloroquine and azithromycin plus zinc sulphate versus hydroxychloroquine and azithromycin alone.
Methodology. This was a retrospective observational study. Data was collected from medical records for all patients with admission dates ranging from 2 March 2020 through to 11 April 2020. Initial clinical characteristics on presentation, medications given during the hospitalization, and hospital outcomes were recorded. The study included patients admitted to any of four acute care NYU Langone Health Hospitals in New York City. Patients included were admitted to the hospital with at least one positive COVID-19 test and had completed their hospitalization. Patients were excluded from the study if they were never admitted to the hospital or if there was an order for other investigational therapies for COVID-19.
Results. Patients taking zinc sulphate in addition to hydroxychloroquine and azithromycin (n=411) and patients taking hydroxychloroquine and azithromycin alone (n=521) did not differ in age, race, sex, tobacco use or relevant comorbidities. The addition of zinc sulphate did not impact the length of hospitalization, duration of ventilation or intensive care unit (ICU) duration. In univariate analyses, zinc sulphate increased the frequency of patients being discharged home, and decreased the need for ventilation, admission to the ICU and mortality or transfer to hospice for patients who were never admitted to the ICU. After adjusting for the time at which zinc sulphate was added to our protocol, an increased frequency of being discharged home (OR 1.53, 95 % CI 1.12–2.09) and reduction in mortality or transfer to hospice among patients who did not require ICU level of care remained significant (OR 0.449, 95 % CI 0.271–0.744).
Conclusion. This study provides the first in vivo evidence that zinc sulphate may play a role in therapeutic management for COVID-19.
-
-
-
Molecular simulation of SARS-CoV-2 spike protein binding to pangolin ACE2 or human ACE2 natural variants reveals altered susceptibility to infection
More LessWe constructed complex models of SARS-CoV-2 spike protein binding to pangolin or human ACE2, the receptor for virus transmission, and estimated the binding free energy changes using molecular dynamics simulation. SARS-CoV-2 can bind to both pangolin and human ACE2, but has a significantly lower binding affinity for pangolin ACE2 due to the increased binding free energy (9.5 kcal mol−1). Human ACE2 is among the most polymorphous genes, for which we identified 317 missense single-nucleotide variations (SNVs) from the dbSNP database. Three SNVs, E329G (rs143936283), M82I (rs267606406) and K26R (rs4646116), had a significant reduction in binding free energy, which indicated higher binding affinity than wild-type ACE2 and greater susceptibility to SARS-CoV-2 infection for people with them. Three other SNVs, D355N (rs961360700), E37K (rs146676783) and I21T (rs1244687367), had a significant increase in binding free energy, which indicated lower binding affinity and reduced susceptibility to SARS-CoV-2 infection.
-
-
-
SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology
The sudden emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 from the Chinese province of Hubei and its subsequent pandemic spread highlight the importance of understanding the full molecular details of coronavirus infection and pathogenesis. Here, we compared a variety of replication features of SARS-CoV-2 and SARS-CoV and analysed the cytopathology caused by the two closely related viruses in the commonly used Vero E6 cell line. Compared to SARS-CoV, SARS-CoV-2 generated higher levels of intracellular viral RNA, but strikingly about 50-fold less infectious viral progeny was recovered from the culture medium. Immunofluorescence microscopy of SARS-CoV-2-infected cells established extensive cross-reactivity of antisera previously raised against a variety of non-structural proteins, membrane and nucleocapsid protein of SARS-CoV. Electron microscopy revealed that the ultrastructural changes induced by the two SARS viruses are very similar and occur within comparable time frames after infection. Furthermore, we determined that the sensitivity of the two viruses to three established inhibitors of coronavirus replication (remdesivir, alisporivir and chloroquine) is very similar, but that SARS-CoV-2 infection was substantially more sensitive to pre-treatment of cells with pegylated interferon alpha. An important difference between the two viruses is the fact that – upon passaging in Vero E6 cells – SARS-CoV-2 apparently is under strong selection pressure to acquire adaptive mutations in its spike protein gene. These mutations change or delete a putative furin-like cleavage site in the region connecting the S1 and S2 domains and result in a very prominent phenotypic change in plaque assays.
-
-
-
Epidemiological and clinical characteristics of coronavirus disease (COVID-19) cases at a screening clinic during the early outbreak period: a single-centre study
More LessIntroduction. Coronavirus disease 2019 (COVID-19) is an infectious disease caused by Severe Acute Respiratory Corona Virus-2 (SARS-CoV-2). The disease was first identified in December 2019 in Wuhan, the capital of China's Hubei province, and has since spread globally, resulting in the ongoing 2019–2020 corona virus pandemic. SARS-CoV-2 is closely related to the original SARS-CoV. It is thought to have a zoonotic origin. The virus is primarily spread between people during close contact, often via small droplets produced by coughing, sneezing or talking. People may also become infected by touching a contaminated surface and then touching their face. COVID-19 patients currently remain the primary source of infection. An epidemiological survey indicated that the general population is susceptible to SARS-CoV-2. The spectrum of this disease ranges from mild to life-threatening. Fever is the most common symptom, although older people and those with comorbidities may experience fever later in the disease. Other common symptoms include cough, loss of appetite, fatigue, shortness of breath, sputum production, and muscle and joint pains. Symptoms such as nausea, vomiting and diarrhea have been observed in varying percentages. Some cases might progress promptly to acute respiratory distress syndrome (ARDS) and/or multiple organ function failure. Asymptomatic carriers and those in the incubation period may also be infectious.
Aim. To determine the epidemiological and clinical characteristics of patients presenting with COVID-19 at the screening clinic of a tertiary care hospital in Peshawar, Pakistan.
Methodology. In this descriptive study, we analysed data of patients presenting to a newly established Covid-19 screening clinic in Rehman Medical Institute. Anyone who reported with new onset fever and/or cough was tested for SARS-CoV-2 in the screening clinic. We documented and analysed demographic, epidemiological and clinical characteristics, which included age, sex, travel history, clinical features, comorbidities and laboratory data of patients confirmed by real-time reverse-transcription (RT)-PCR at Rehman Medical Institute, Peshawar, Pakistan from 15 March till 21 April 2020. Paired specimens of throat swabs and nasal swabs were obtained from 845 patients, ribonucleic acid (RNA) was extracted and tested for SARS-CoV-2 by the RT-PCR assay.
Results. A total of 845 specimens were taken as described above. The positive rate for SARS-CoV-2 was about 14.3%. Male and older population had a significantly higher positive rate. Of the 121 patients infected with SARS-CoV-2, the mean age was 43.19 years (sd, 17.57) and the infections were more frequent among male gender accounting for 85 (70.25 %) patients. Common symptoms included fever (88 patients, 72 %), cough (72 patients, 59.5 %) and shortness of breath (69 patients, 57 %). Twenty-two (18 %) patients had recent travel history outside Pakistan in the previous 14 days, the majority of whom had returned back from Saudi Arabia.
Conclusion. In this single-centre, prospective, descriptive study, fever, cough and shortness of breath were the most common symptoms. Old age (>50 years), chronic underlying comorbidities and travel history may be risk factors. Therefore, we concluded that viral nucleic acid amplification tests (NAAT) played an important role in identifying SARS-CoV-2 infection in a screening clinic, which helped with isolation and cohorting of these patients.
-
-
-
The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection
More LessSARS-CoV-2 is a novel coronavirus that is the causative agent of coronavirus infectious disease 2019 (COVID-19). As of 17 April 2020, it has infected 2 114 269 people, resulting in 145 144 deaths. The timing, magnitude and longevity of humoral immunity is not yet understood for SARS-CoV-2. Nevertheless, understanding this is urgently required to inform the likely future dynamics of the pandemic, to guide strategies to allow relaxation of social distancing measures and to understand how to deploy limiting vaccine doses when they become available to achieve maximum impact. SARS-CoV-2 is the seventh human coronavirus to be described. Four human coronaviruses circulate seasonally and cause common colds. Two other coronaviruses, SARS and MERS, have crossed from animal sources into humans but have not become endemic. Here we review what is known about the human humoral immune response to epidemic SARS CoV and MERS CoV and to the seasonal, endemic coronaviruses. Then we summarize recent, mostly non-peer reviewed, studies into SARS-CoV-2 serology and reinfection in humans and non-human primates and summarize current pressing research needs.
-
-
-
Dynamic linkage of COVID-19 test results between Public Health England’s Second Generation Surveillance System and UK Biobank
UK Biobank (UKB) is an international health resource enabling research into the genetic and lifestyle determinants of common diseases of middle and older age. It comprises 500 000 participants. Public Health England’s Second Generation Surveillance System is a centralized microbiology database covering English clinical diagnostics laboratories that provides national surveillance of legally notifiable infections, bacterial isolations and antimicrobial resistance. We previously developed secure, pseudonymized, individual-level linkage of these systems. In this study, we implemented rapid dynamic linkage, which allows us to provide a regular feed of new COVID-19 (SARS-CoV-2) test results to UKB to facilitate rapid and urgent research into the epidemiological and human genetic risk factors for severe infection in the cohort. Here, we have characterized the first 1352 cases of COVID-19 in UKB participants, of whom 895 met our working definition of severe COVID-19 as inpatients hospitalized on or after 16 March 2020. We found that the incidence of severe COVID-19 among UKB cases was 27.4 % lower than the general population in England, although this difference varied significantly by age and sex. The total number of UKB cases could be estimated as 0.6 % of the publicly announced number of cases in England. We considered how increasing case numbers will affect the power of genome-wide association studies. This new dynamic linkage system has further potential to facilitate the investigation of other infections and the prospective collection of microbiological cultures to create a microbiological biobank (bugbank) for studying the interaction of environment, human and microbial genetics on infection in the UKB cohort.
-
-
-
Pandemic planning: plotting a course through the coronawars
More LessThe biological motor behind the current coronavirus pandemic has placed microbiology on a global stage, and given its practitioners a role among the architects of recovery. Planning for a return to normality or the new normal is a complex, multi-agency task for which healthcare scientists may not be prepared. This paper introduces a widely used military planning framework known as the Joint Military Appreciation Process, and outlines how it can be applied to deal with the next phase of the COVID-19 pandemic. Recognition of SARS-CoV-2's critical attributes, targetable vulnerabilities, and its most likely and most dangerous effects is a necessary precursor to scoping, framing and mission analysis. From this flows course of action development, analysis, concept of operations development, and an eventual decision to act on the plan. The same planning technique is applicable to the larger scale task of setting a microbiology-centric plan in the broader context of social and economic recovery.
-
-
-
Prolonged viral shedding and new mutations of COVID-19 could complicate the control of the pandemic
More LessThe studies of coronavirus disease 2019 (COVID-19) have mainly focused on epidemiological and clinical features of patients, but transmission dynamics of SARS-CoV-2 virus after patients have recovered is still poorly understood. Here we report a case with prolonged viral shedding of COVID-19 in Kaohsiung, Taiwan. This patient started to show myalgia and malaise in Wuhan, and the onset of the fever was on days 7–14 of the illness. All clinical and radiological results returned to normal after day 26, however, viral shedding was still evident 14 days later. Sequence analysis of the genome of the Taiwanese SARS-CoV-2 isolate from this patient reveals new mutations in viral replicase and ORF3a, indicating that COVID-19 evolves very quickly. Prolonged viral shedding and new mutations in the viral genome could potentially complicate the control of the COVID-19 pandemic.
-
-
-
N-glycosylation of infectious bronchitis virus M41 spike determines receptor specificity
Infection of chicken coronavirus infectious bronchitis virus (IBV) is initiated by binding of the viral heavily N-glycosylated attachment protein spike to the alpha-2,3-linked sialic acid receptor Neu5Ac. Previously, we have shown that N-glycosylation of recombinantly expressed receptor binding domain (RBD) of the spike of IBV-M41 is of critical importance for binding to chicken trachea tissue. Here we investigated the role of N-glycosylation of the RBD on receptor specificity and virus replication in the context of the virus particle. Using our reverse genetics system we were able to generate recombinant IBVs for nine-out-of-ten individual N-glycosylation mutants. In vitro growth kinetics of these viruses were comparable to the virus containing the wild-type M41-S1. Furthermore, Neu5Ac binding by the recombinant viruses containing single N-glycosylation site knock-out mutations matched the Neu5Ac binding observed with the recombinant RBDs. Five N-glycosylation mutants lost the ability to bind Neu5Ac and gained binding to a different, yet unknown, sialylated glycan receptor on host cells. These results demonstrate that N-glycosylation of IBV is a determinant for receptor specificity.
-
-
-
Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2
More LessIntroduction. The emergence of SARS-CoV-2 has taken humanity off guard. Following an outbreak of SARS-CoV in 2002, and MERS-CoV about 10 years later, SARS-CoV-2 is the third coronavirus in less than 20 years to cross the species barrier and start spreading by human-to-human transmission. It is the most infectious of the three, currently causing the COVID-19 pandemic. No treatment has been approved for COVID-19. We previously proposed targets that can serve as binding sites for antiviral drugs for multiple coronaviruses, and here we set out to find current drugs that can be repurposed as COVID-19 therapeutics.
Aim. To identify drugs against COVID-19, we performed an in silico virtual screen with the US Food and Drug Administration (FDA)-approved drugs targeting the RNA-dependent RNA polymerase (RdRP), a critical enzyme for coronavirus replication.
Methodology. Initially, no RdRP structure of SARS-CoV-2 was available. We performed basic sequence and structural analysis to determine if RdRP from SARS-CoV was a suitable replacement. We performed molecular dynamics simulations to generate multiple starting conformations that were used for the in silico virtual screen. During this work, a structure of RdRP from SARS-CoV-2 became available and was also included in the in silico virtual screen.
Results. The virtual screen identified several drugs predicted to bind in the conserved RNA tunnel of RdRP, where many of the proposed targets were located. Among these candidates, quinupristin is particularly interesting because it is expected to bind across the RNA tunnel, blocking access from both sides and suggesting that it has the potential to arrest viral replication by preventing viral RNA synthesis. Quinupristin is an antibiotic that has been in clinical use for two decades and is known to cause relatively minor side effects.
Conclusion. Quinupristin represents a potential anti-SARS-CoV-2 therapeutic. At present, we have no evidence that this drug is effective against SARS-CoV-2 but expect that the biomedical community will expeditiously follow up on our in silico findings.
-
-
-
Logic in the time of coronavirus
More LessMuch has happened here since the local news media trumpeted the first Australian COVID-19 fatality, and stirred up a medieval fear of contagion. We now need to take a step back to examine the logic underlying the use of our limited COVID-19 countermeasures. Emerging infectious diseases by their nature, pose new challenges to the diagnostic-treatment-control nexus, and push our concepts of causality beyond the limits of the conventional Koch-Henle approach to aetiology. We need to use contemporary methods of assessing causality to ensure that clinical, laboratory and public health measures draw on a rational, evidence-based approach to argumentation. The purpose of any aetiological hypothesis is to derive actionable insights into this latest emerging infectious disease. This review is an introduction to a conversation with medical microbiologists, which will be supported by a moderated blog.
-
-
-
Isolation and growth characterization of novel full length and deletion mutant human MERS-CoV strains from clinical specimens collected during 2015
Azaibi Tamin, Krista Queen, Clinton R. Paden, Xiaoyan Lu, Erica Andres, Senthilkumar K. Sakthivel, Yan Li, Ying Tao, Jing Zhang, Shifaq Kamili, Abdullah M. Assiri, Ali Alshareef, Taghreed A. Alaifan, Asmaa M. Altamimi, Hani Jokhdar, John T. Watson, Susan I. Gerber, Suxiang Tong and Natalie J. ThornburgMiddle East respiratory syndrome (MERS) is a viral respiratory illness first reported in Saudi Arabia in September 2012 caused by the human coronavirus (CoV), MERS-CoV. Using full-genome sequencing and phylogenetic analysis, scientists have identified three clades and multiple lineages of MERS-CoV in humans and the zoonotic host, dromedary camels. In this study, we have characterized eight MERS-CoV isolates collected from patients in Saudi Arabia in 2015. We have performed full-genome sequencing on the viral isolates, and compared them to the corresponding clinical specimens. All isolates were clade B, lineages 4 and 5. Three of the isolates carry deletions located on three independent regions of the genome in the 5′UTR, ORF1a and ORF3. All novel MERS-CoV strains replicated efficiently in Vero and Huh7 cells. Viruses with deletions in the 5′UTR and ORF1a exhibited impaired viral release in Vero cells. These data emphasize the plasticity of the MERS-CoV genome during human infection.
-
-
-
Middle East respiratory coronavirus (MERS-CoV) spike (S) protein vesicular stomatitis virus pseudoparticle neutralization assays offer a reliable alternative to the conventional neutralization assay in human seroepidemiological studies
Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel zoonotic coronavirus that was identified in 2012. MERS-CoV infection in humans can result in an acute, severe respiratory disease and in some cases multi-organ failure; the global mortality rate is approximately 35 %. The MERS-CoV spike (S) protein is a major target for neutralizing antibodies in infected patients. The MERS-CoV microneutralization test (MNt) is the gold standard method for demonstrating prior infection. However, this method requires the use of live MERS-CoV in biosafety level 3 (BSL-3) containment. The present work describes the generation and validation of S protein-bearing vesicular stomatitis virus (VSV) pseudotype particles (VSV-MERS-CoV-S) in which the VSV glycoprotein G gene has been replaced by the luciferase reporter gene, followed by the establishment of a pseudoparticle-based neutralization test to detect MERS-CoV neutralizing antibodies under BSL-2 conditions. Using a panel of human sera from confirmed MERS-CoV patients, the VSV-MERS-CoV particle neutralization assay produced results that were highly comparable to those of the microneutralization test using live MERS-CoV. The results suggest that the VSV-MERS-CoV-S pseudotype neutralization assay offers a highly specific, sensitive and safer alternative method to detect MERS-CoV neutralizing antibodies in human sera.
-
-
-
Detection and characterization of a novel bat-borne coronavirus in Singapore using multiple molecular approaches
Bats are important reservoirs and vectors in the transmission of emerging infectious diseases. Many highly pathogenic viruses such as SARS-CoV and rabies-related lyssaviruses have crossed species barriers to infect humans and other animals. In this study we monitored the major roost sites of bats in Singapore, and performed surveillance for zoonotic pathogens in these bats. Screening of guano samples collected during the survey uncovered a bat coronavirus (Betacoronavirus) in Cynopterus brachyotis, commonly known as the lesser dog-faced fruit bat. Using a capture-enrichment sequencing platform, the full-length genome of the bat CoV was sequenced and found to be closely related to the bat coronavirus HKU9 species found in Leschenault’s rousette discovered in the Guangdong and Yunnan provinces.
-
-
-
Identification of peptide domains involved in the subcellular localization of the feline coronavirus 3b protein
More LessFeline coronavirus (FCoV) has been identified as the aetiological agent of feline infectious peritonitis (FIP), a highly fatal systemic disease in cats. FCoV open reading frame 3 (ORF3) encodes accessory proteins 3a, 3b and 3 c. The FCoV 3b accessory protein consists of 72 amino acid residues and localizes to nucleoli and mitochondria. The present work focused on peptide domains within FCoV 3b that drive its intracellular trafficking. Transfection of different cell types with FCoV 3b fused to enhanced green fluorescent protein (EGFP) or 3×FLAG confirmed localization of FCoV 3b in the mitochondria and nucleoli. Using serial truncated mutants, we showed that nucleolar accumulation is controlled by a joint nucleolar and nuclear localization signal (NoLS/NLS) in which the identified overlapping pat4 motifs (residues 53–57) play a critical role. Mutational analysis also revealed that mitochondrial translocation is mediated by N-terminal residues 10–35, in which a Tom20 recognition motif (residues 13–17) and two other overlapping hexamers (residues 24–30) associated with mitochondrial targeting were identified. In addition, a second Tom20 recognition motif was identified further downstream (residues 61–65), although the mitochondrial translocation evoked by these residues seemed less efficient as a diffuse cytoplasmic distribution was also observed. Assessing the spatiotemporal distribution of FCoV 3b did not provide convincing evidence of dynamic shuttling behaviour between the nucleoli and the mitochondria.
-
-
-
First detection of bovine coronavirus in Yak (Bos grunniens) and a bovine coronavirus genome with a recombinant HE gene
Qifu He, Zijing Guo, Bin Zhang, Hua Yue and Cheng TangThe yak (Bosgrunniens) is a unique domestic bovine species that plays an indispensable role for herdsmen in the Qinghai–Tibet Plateau. Here, 336 diarrhoeic samples were collected from yaks on 29 farms in the Qinghai–Tibet Plateau from 2015 to 2017. Approximately 69.05 % (232/336) of the diarrhoeic samples were assessed as bovine coronavirus (BCoV)-positive by RT-PCR assay, and most of the detected strains showed a unique evolution based on 40 spike (S), nucleocapsid (N) and haemagglutinin-esterase (HE) gene fragments. Notably, the 12 complete S genes detected shared 1 identical amino acid mutation (E121V) in the S1 subunit compared with the other 150 complete S genes in the GenBank database. Furthermore, a BCoV strain (designated YAK/HY24/CH/2017) was isolated from one diarrhoeic sample (virus titre : 108.17TCID50 ml−1), and a phylogenetic analysis based on complete genome sequences revealed that strain YAK/HY24/CH/2017 has the closest genetic relationship with the BCoV prototype strain Mebus. Interestingly, 2 significant characteristics were observed in the genome of strain YAK/HY24/CH/2017 : (1) the strain had 26 unique amino acid variations in the S gene compared with the other 150 BCoV S genes in the GenBank database and (2) a recombination event was identified between the esterase and lectin domains of the HE gene. In conclusion, this study revealed the high prevalence of BCoV in yaks in the Qinghai–Tibet Plateau. To the best of our knowledge, this is the first description of the molecular prevalence of BCoV in yaks and of a BCoV genome with an HE gene recombination.
-
-
-
Characterization of intestinal Escherichia coli isolated from calves with diarrhea due to rotavirus and coronavirus
Purpose. To address more information about changes in commensal Escherichia coli during virus intestinal infection, we characterized 30 faecal E. coli isolates from calves (21 to 60 days old) with diarrhea due to rotavirus and coronavirus, which received, before diagnosis, tetracycline, gentamicin and enrofloxacin drugs.
Methodology. Clermont’s phylogenetic classification; presence of genes for curli, cellulose, fimbriae (F4, F5, F6, F18, F41); and antimicrobial susceptibility were used to characterize the isolates. Disk diffusion technique and PCR were used as methodologies.
Results. E. coli isolates from calves with diarrhea were phylogenetically classified as B1 (70%, 21/30), B2 (3.33%, 1/30), C (3.33%, 1/30), D (3.33%, 1/30), E (13.33%, 4/30) and unknown (6.7 %; 2/30), whereas E. coli isolates from the control group were classified only as B1 (83.3%, 25/30), E (10 %; 3/30) and unknown (6,7 %; 2/30). E. coli isolates from calves with diarrhea showed a much higher resistance profile with 16 (53.3%) multiresistant isolates. Only isolates (30%-9/30) from diarrheic calves were also positive for fimbriae, specifically 16.7% (5/30) for F5 and 13.3% (4/30) for F18.
Conclusion. To sum up, E. coli isolates from calves with diarrhea showed differences in relation to the control group, confirming changes in commensal E. coli during virus intestinal infection. It can be emphasized that some care should be taken to manage diarrheic calves: the pathological agent must be diagnosed prior to treatment; antibacterial treatment should be with antimicrobials with a different mechanism of action; and finally, treated animals should be maintained separately from others because they can carry micro-organisms with a resistant profile.
-
-
-
Generation of recombinant avian coronaviruses indicates the S gene is a factor in pathogenicity
More LessThe avian coronavirus infectious bronchitis virus (IBV) is the most economically important disease of chickens in the UK, causing significant losses as a result of poor weight gain and reduced egg quality in infected birds. IBV expresses a large spike (S) glycoprotein on the surface of the virion which is responsible for attachment to host cells and is the main antigenic target for neutralising antibodies during infection. Previous work has also demonstrated that the S protein determines cell tropism in vitro. In order to investigate the involvement of the S gene in IBV pathogenesis and explore the potential for vaccine propagation in cell culture, recombinant viruses were generated using vaccinia virus based reverse genetics. Two isolates of the pathogenic M41 strain were mutated to include the S gene from a non-pathogenic lab strain with extended tropism (Beau-R) or a heterologous pathogenic field strain with restricted tropism (4/91), resulting in two recombinant IBVs termed M41K-BeauR(S) and M41K-4/91(S), respectively. These viruses were characterised in vitro and in vivo to determine the involvement of the S gene in IBV replication and pathogenicity. M41K-BeauR(S) was attenuated in vivo but exhibited the extended host tropism of the S donor strain. M41K-4/91(S) remained pathogenic and also adopted the restricted in vitro tropism of 4/91. This indicates that the S gene not only determines the cellular tropism of the virus but also plays a key role during in vivo infections, and that replacing the ectodomain of IBV S can significantly alter the pathogenicity of the resulting virus.
-
-
-
Recombinant infectious bronchitis viruses expressing heterologous S1 subunits: potential for a new generation of vaccines that replicate in Vero cells
More LessThe spike glycoprotein (S) of infectious bronchitis virus (IBV) comprises two subunits, S1 and S2. We have previously demonstrated that the S2 subunit of the avirulent Beau-R strain is responsible for its extended cellular tropism for Vero cells. Two recombinant infectious bronchitis viruses (rIBVs) have been generated; the immunogenic S1 subunit is derived from the IBV vaccine strain, H120, or the virulent field strain, QX, within the genetic background of Beau-R. The rIBVs BeauR-H120(S1) and BeauR-QX(S1) are capable of replicating in primary chicken kidney cell cultures and in Vero cells. These results demonstrate that rIBVs are able to express S1 subunits from genetically diverse strains of IBV, which will enable the rational design of a future generation of IBV vaccines that may be grown in Vero cells.
-
-
-
Deletion of accessory genes 3a, 3b, 5a or 5b from avian coronavirus infectious bronchitis virus induces an attenuated phenotype both in vitro and in vivo
Avian coronavirus infectious bronchitis virus (IBV) infects domestic fowl, resulting in respiratory disease and causing serious losses in unprotected birds. Its control is mainly achieved by using live attenuated vaccines. Here we explored the possibilities for rationally attenuating IBV to improve our knowledge regarding the function of IBV accessory proteins and for the development of next-generation vaccines with the recently established reverse genetic system for IBV H52 based on targeted RNA recombination and selection of recombinant viruses in embryonated eggs. To this aim, we selectively removed accessory genes 3a, 3b, 5a and 5b individually, and rescued the resulting recombinant (r) rIBV-Δ3a, rIBV-Δ3b, rIBV-Δ5a and rIBV-Δ5b. In vitro inoculation of chicken embryo kidney cells with recombinant and wild-type viruses demonstrated that the accessory protein 5b is involved in the delayed activation of the interferon response of the host after IBV infection. Embryo mortality after the inoculation of 8-day-old embryonated chicken eggs with recombinant and wild-type viruses showed that rIBV-Δ3b, rIBV-Δ5a and rIBV-Δ5b had an attenuated phenotype in ovo, with reduced titres at 6 h p.i. and 12 h p.i. for all viruses, while growing to the same titre as wild-type rIBV at 48 h p.i. When administered to 1-day-old chickens, rIBV-Δ3a, rIBV-Δ3b, rIBV-Δ5a and rIBV-Δ5b showed reduced ciliostasis in comparison to the wild-type viruses. In conclusion, individual deletion of accessory genes in IBV H52 resulted in mutant viruses with an attenuated phenotype.
-
-
-
The ADRP domain from a virulent strain of infectious bronchitis virus is not sufficient to confer a pathogenic phenotype to the attenuated Beaudette strain
More LessThe replicase gene of the coronavirus infectious bronchitis virus (IBV) encodes 15 non-structural proteins (nsps). Nsp 3 is a multi-functional protein containing a conserved ADP-ribose-1″-phosphatase (ADRP) domain. The crystal structures of the domain from two strains of IBV, M41 (virulent) and Beaudette (avirulent), identified a key difference; M41 contains a conserved triple-glycine motif, whilst Beaudette contains a glycine-to-serine mutation that is predicted to abolish ADRP activity. Although ADRP activity has not been formally demonstrated for IBV nsp 3, Beaudette fails to bind ADP-ribose. The role of ADRP in virulence was investigated by generating rIBVs, based on Beaudette, containing either a restored triple-glycine motif or the complete M41 ADRP domain. Replication in vitro was unaffected by the ADRP modifications and the in vivo phenotype of the rIBVs was found to be apathogenic, indicating that restoration of the triple-glycine motif is not sufficient to restore virulence to the apathogenic Beaudette strain.
-
-
-
Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors
More LessEnveloped viruses gain entry into host cells by fusing with cellular membranes, a step that is required for virus replication. Coronaviruses, including the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and infectious bronchitis virus (IBV), fuse at the plasma membrane or use receptor-mediated endocytosis and fuse with endosomes, depending on the cell or tissue type. The virus spike (S) protein mediates fusion with the host cell membrane. We have shown previously that an Abelson (Abl) kinase inhibitor, imatinib, significantly reduces SARS-CoV and MERS-CoV viral titres and prevents endosomal entry by HIV SARS S and MERS S pseudotyped virions. SARS-CoV and MERS-CoV are classified as BSL-3 viruses, which makes experimentation into the cellular mechanisms involved in infection more challenging. Here, we use IBV, a BSL-2 virus, as a model for studying the role of Abl kinase activity during coronavirus infection. We found that imatinib and two specific Abl kinase inhibitors, GNF2 and GNF5, reduce IBV titres by blocking the first round of virus infection. Additionally, all three drugs prevented IBV S-induced syncytia formation prior to the hemifusion step. Our results indicate that membrane fusion (both virus–cell and cell–cell) is blocked in the presence of Abl kinase inhibitors. Studying the effects of Abl kinase inhibitors on IBV will be useful in identifying the host cell pathways required for coronavirus infection. This will provide an insight into possible therapeutic targets to treat infections by current as well as newly emerging coronaviruses.
-
-
-
Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing Red-mediated recombination cloning
Middle East respiratory syndrome coronavirus (MERS-CoV) is a high-priority pathogen in pandemic preparedness research. Reverse genetics systems are a valuable tool to study viral replication and pathogenesis, design attenuated vaccines and create defined viral assay systems for applications such as antiviral screening. Here we present a novel reverse genetics system for MERS-CoV that involves maintenance of the full-length viral genome as a cDNA copy inserted in a bacterial artificial chromosome amenable to manipulation by homologue recombination, based on the bacteriophage λ Red recombination system. Based on a full-length infectious MERS-CoV cDNA clone, optimal genomic insertion sites and expression strategies for GFP were identified and used to generate a reporter MERS-CoV expressing GFP in addition to the complete set of viral proteins. GFP was genetically fused to the N-terminal part of protein 4a, from which it is released during translation via porcine teschovirus 2A peptide activity. The resulting reporter virus achieved titres nearly identical to the wild-type virus 48 h after infection of Vero cells at m.o.i. 0.001 (1×105 p.f.u. ml−1 and 3×105 p.f.u. ml−1, respectively), and allowed determination of the 50 % inhibitory concentration for the known MERS-CoV inhibitor cyclosporine A based on fluorescence readout. The resulting value was 2.41 µM, which corresponds to values based on wild-type virus. The reverse genetics system described herein can be efficiently mutated by Red-mediated recombination. The GFP-expressing reporter virus contains the full set of MERS-CoV proteins and achieves wild-type titres in cell culture.
-
-
-
A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat
Bats are important reservoir hosts for emerging viruses, including coronaviruses that cause diseases in people. Although there have been several studies on the pathogenesis of coronaviruses in humans and surrogate animals, there is little information on the interactions of these viruses with their natural bat hosts. We detected a coronavirus in the intestines of 53/174 hibernating little brown bats (Myotis lucifugus), as well as in the lungs of some of these individuals. Interestingly, the presence of the virus was not accompanied by overt inflammation. Viral RNA amplified from little brown bats in this study appeared to be from two distinct clades. The sequences in clade 1 were very similar to the archived sequence derived from little brown bats and the sequences from clade 2 were more closely related to the archived sequence from big brown bats. This suggests that two closely related coronaviruses may circulate in little brown bats. Sequence variation among coronavirus detected from individual bats suggested that infection occurred prior to hibernation, and that the virus persisted for up to 4 months of hibernation in the laboratory. Based on the sequence of its genome, the coronavirus was placed in the Alphacoronavirus genus, along with some human coronaviruses, bat viruses and the porcine epidemic diarrhoea virus. The detection and identification of an apparently persistent coronavirus in a local bat species creates opportunities to understand the dynamics of coronavirus circulation in bat populations.
-
-
-
A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective
More LessThere have been 2040 laboratory-confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) in 27 countries, with a mortality rate of 34.9 %. There is no specific therapy. The current therapies have mainly been adapted from severe acute respiratory syndrome (SARS-CoV) treatments, including broad-spectrum antibiotics, corticosteroids, interferons, ribavirin, lopinavir–ritonavir or mycophenolate mofetil, and have not been subject to well-organized clinical trials. The development of specific therapies and vaccines is therefore urgently required. We examine existing and potential therapies and vaccines from a molecular perspective. These include viral S protein targeting; inhibitors of host proteases, including TMPRSS2, cathepsin L and furin protease, and of viral M(pro) and the PL(pro) proteases; convalescent plasma; and vaccine candidates. The Medline database was searched using combinations and variations of terms, including ‘Middle East respiratory syndrome coronavirus’, ‘MERS-CoV’, ‘SARS’, ‘therapy’, ‘molecular’, ‘vaccine’, ‘prophylactic’, ‘S protein’, ‘DPP4’, ‘heptad repeat’, ‘protease’, ‘inhibitor’, ‘anti-viral’, ‘broad-spectrum’, ‘interferon’, ‘convalescent plasma’, ‘lopinavir ritonavir’, ‘antibodies’, ‘antiviral peptides’ and ‘live attenuated viruses’. There are many options for the development of MERS-CoV-specific therapies. Currently, MERS-CoV is not considered to have pandemic potential. However, the high mortality rate and potential for mutations that could increase transmissibility give urgency to the search for direct, effective therapies. Well-designed and controlled clinical trials are needed, both for existing therapies and for prospective direct therapies.
-
-
-
Identification and characterization of a Golgi retention signal in feline coronavirus accessory protein 7b
Feline coronaviruses encode five accessory proteins with largely elusive functions. Here, one of these proteins, called 7b (206 residues), was investigated using a reverse genetic approach established for feline infectious peritonitis virus (FIPV) strain 79–1146. Recombinant FIPVs (rFPIVs) expressing mutant and/or FLAG-tagged forms of 7b were generated and used to investigate the expression, processing, glycosylation, localization and trafficking of the 7b protein in rFIPV-infected cells, focusing on a previously predicted ER retention signal, KTEL, at the C-terminus of 7b. The study revealed that 7b is N-terminally processed by a cellular signalase. The cleavage site, 17-Ala|Thr-18, was unambiguously identified by N-terminal sequence analysis of a 7b processing product purified from rFIPV-infected cells. Based on this information, rFIPVs expressing FLAG-tagged 7b proteins were generated and the effects of substitutions in the C-terminal 202KTEL206 sequence were investigated. The data show that (i) 7b localizes to and is retained in the medial- and/or trans-Golgi compartment, (ii) the C-terminal KTEL sequence acts as a Golgi [rather than an endoplasmic reticulum (ER)] retention signal, (iii) minor changes in the KTEL motif (such as KTE, KTEV, or the addition of a C-terminal tag) abolish Golgi retention, resulting in relocalization and secretion of 7b, and (iv) a KTEL-to-KDEL replacement causes retention of 7b in the ER of rFIPV-infected feline cells. Taken together, this study provides interesting new insights into an efficient Golgi retention signal that controls the cellular localization and trafficking of the FIPV 7b protein in virus-infected feline cells.
-