Candida

In conjunction with the Candida and Candidiasis meeting, Microbiology Society is bringing together research on Candida biology – species that are major causes of infectious disease in AIDS patients, cancer chemotherapy patients, premature infants, etc. The polymorphic yeast Candida albicans is the most important fungal pathogen in humans. Beyond the clinics, basic research in this organism deals with a variety of topics of interest, like the genetics and molecular biology behind antifungal drug resistance; the molecular determinants of endurance to nutritional, pH and oxidative stress imposed by the host defences; or its interactions with both the host epithelia and bacterial partners that share the mucosal microbiota with the fungus. This collection of research articles published on diverse aspects of Candida biology showcases the journals’ range of Candida research. This collection is open for submissions across our portfolio. Authors are invited to submit on any aspect of Candida research. Upon submission, please indicate that your manuscript is to be considered for the Candida collection.
Collection Contents
21 - 26 of 26 results
-
-
Role of biofilm morphology, matrix content and surface hydrophobicity in the biofilm-forming capacity of various Candida species
More LessThe present study aimed to evaluate the role of biofilm morphology, matrix content and surface hydrophobicity in the biofilm-forming capacity of Candida albicans and non-albicans Candida (NAC) spp. Biofilm formation was determined by microtitre plate assay and bright-field and scanning electron microscopy. The matrix carbohydrates, proteins and e-DNA were quantified by phenol-sulfuric acid, bicinchoninic acid and UV spectroscopy, respectively. Specific glycosyl residues were detected by dot blot. The cell-surface hydrophobicity was determined by hydrocarbon adhesion assay. Candida tropicalis was found to exhibit the highest adherence to polystyrene. It formed dense biofilms with extensive pseudohyphae and hyphal elements, high hydrophobicity and the greatest amount of matrix carbohydrates, proteins and e-DNA. C. albicans displayed higher adherence and a complex biofilm morphology with larger aggregates than Candida parapsilosis and Candida krusei, but had lower matrix content and hydrophobicity. Thus, the combinatorial effect of increased filamentation, maximum matrix content and high hydrophobicity contributes to the enhanced biofilm-forming capacity of C. tropicalis.
-
-
-
1,4-Naphthoquinone derivatives potently suppress Candida albicans growth, inhibit formation of hyphae and show no toxicity toward zebrafish embryos
Purpose. In this study, we applied various assays to find new activities of 1,4-naphthoquinone derivatives for potential anti-Candida albicans applications.
Methodology. These assays determined (a) the antimicrobial effect on growth/cell multiplication in fungal cultures, (b) the effect on formation of hyphae and biofilm, (c) the influence on cell membrane integrity, (d) the effect on cell morphology using atomic force microscopy, and (e) toxicity against zebrafish embryos. We have demonstrated the activity of these compounds against different Candida species and clinical isolates of C. albicans.
Key findings. 1,4-Naphthoquinones significantly affected fungal strains at 8–250 mg l−1 of MIC. Interestingly, at concentrations below MICs, the chemicals showed effectiveness in inhibition of hyphal formation and cell aggregation in Candida. Of note, atomic force microscopy (AFM) analysis revealed an influence of the compounds on cell morphological properties. However, at low concentrations (0.8–31.2 mg l−1), it did not exert any evident toxic effects on zebrafish embryos.
Conclusions. Our research has evidenced the effectiveness of 1,4-naphthoquinones as potential anti-Candida agents.
-
-
-
Anti-inflammatory effect of two Lactobacillus strains during infection with Gardnerella vaginalis and Candida albicans in a HeLa cell culture model
Lactobacilli are the dominant bacteria of the vaginal tract of healthy women and they play a major role in the maintenance of mucosal homeostasis, preventing genital infections, such as bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC). It is now known that one mechanism of this protection is the influence that lactobacilli can exert on host immune responses. In this context, we evaluated two Lactobacillus strains (L. plantarum 59 and L. fermentum 137) for their immunomodulatory properties in response to Gardnerella vaginalis (BV) or Candida albicans (VVC) infections in a HeLa cell infection model. G. vaginalis and C. albicans triggered the secretion of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-8) and the activation of NF-κB in HeLa cells, in contrast to L. plantarum 59 and L. fermentum 137. Treatments with the Lactobacillus strains or their cell-free supernatants before (pre-treatment) or after (post-treatment) the challenge with the pathogens resulted in decreased secretion of pro-inflammatory cytokines and decreased activation of NF-κB. The treatments with Lactobacillus strains not only decreased the secretion of IL-8, but also its expression, as confirmed by gene reporter luciferase assay, suggesting transcription-level control by lactobacilli. In conclusion, L. plantarum 59 and L. fermentum 137 were confirmed to have an anti-inflammatory effect against G. vaginalis and C. albicans and they were able to influence signalling in NF-κB pathway, making them interesting candidates as probiotics for the prevention or treatment of BV and VVC.
-
-
-
Short- and long-term influence of the levonorgestrel-releasing intrauterine system (Mirena®) on vaginal microbiota and Candida
More LessBackground. Recurrent vulvovaginal infections are a frequent complaint in young women in need of contraception. However, the influence of the contraceptive method on the course of the disease is not well known.
Aim. To investigate the influence of the levonorgestrel-releasing intrauterine-system (LNG-IUS) on the vaginal microflora.
Methods. Short-term (3 months) and long-term (1 to 5 years) changes of vaginal microbiota were compared with pre-insertion values in 252 women presenting for LNG-IUS insertion. Detailed microscopy on vaginal fluid was used to define lactobacillary grades (LBGs), bacterial vaginosis (BV), aerobic vaginitis (AV) and the presence of Candida. Cultures for enteric aerobic bacteria and Candida were used to back up the microscopy findings. Fisher's test was used to compare vaginal microbiome changes pre- and post-insertion.
Results. Compared to the pre-insertion period, we found a temporary worsening in LBGs and increased rates of BV and AV after 3 months of LNG-IUS. After 1 and 5 years, however, these changes were reversed, with a complete restoration to pre-insertion levels. Candida increased significantly after long-term carriage of LNG-IUS compared to the period before insertion [OR 2.0 (CL951.1–3.5), P=0.017].
Conclusions. Short-term use of LNG-IUS temporarily decreases lactobacillary dominance, and increases LBG, AV and BV, but after 1 to 5 years these characteristics return to pre-insertion levels, reducing the risk of complications to baseline levels. Candida colonization, on the other hand, is twice as high after 1 to 5 years of LNG-IUS use, making it less indicated for long-term use in patients with or at risk for recurrent vulvovaginal candidosis.
-
-
-
A novel mechanism of fluconazole: fungicidal activity through dose-dependent apoptotic responses in Candida albicans
More LessFluconazole (FLC) is a well-known fungistatic agent that inhibits ergosterol biosynthesis. We showed that FLC exhibits dose-dependent fungicidal activity, and investigated the fungicidal mechanism of FLC on Candida albicans. To confirm the relationship between fungicidal activity and the inhibition of ergosterol, we assessed membrane dysfunctions via propidium iodide influx and potassium leakage, as well as morphological change. Interestingly, while membrane disruption was not observed at all tested concentrations of FLC, potassium efflux and cell shrinkage were observed at high dosages of FLC (HDF). Low-dosage FLC (LDF) treatment did not induce significant changes. Next, we examined whether the fungicidal activity of FLC was associated with apoptosis in C. albicans. FLC caused dose-dependent apoptotic responses, including phosphatidylserine externalization and DNA fragmentation. It was also involved in glutathione depletion followed by oxidative damage. In particular, unlike LDF, HDF leads to the disruption of mitochondrial homeostasis, including mitochondrial membrane depolarization and accumulation of calcium and reactive oxygen species. HDF-induced mitochondrial dysfunction promoted the release of cytochrome c from mitochondria to the cytosol, and activated intracellular metacaspase. In conclusion, the dose-dependent fungicidal activity of FLC was due to an apoptotic response in C. albicans.
-
-
-
Chain-length-specific anti-Candida activity of cationic lipo-oxazoles: a new class of quaternary ammonium compounds
Purpose. Candida species have become resistant to commonly used anti-fungal drugs like fluconazole and echinocandins. In our screen, a series of quaternary ammonium compounds (QACs) emerged as an alternative treatment choice for drug-resistant Candida infections.
Methodology. Medium alkyl chain cationic lipo-oxazoles comprising six to thirteen twin carbon chains and a quaternary ammonium unit were synthesized and evaluated for their in vitro anti-Candida and biofilm inhibition activity. SEM was performed to visualize membrane distortion.
Results/Key findings. Heptyl and octyl chain analogues (5c, 6b and 6c) showed promising anti-fungal activity. Compound 5c was active against both fluconazole-sensitive and resistant clinical isolates of Candida albicans as well as non-albicans Candida strains. 5c also inhibited the adhesion of C. albicans cells to a polystyrene surface and restricted biofilm formation. SEM further confirmed Candida cell membrane distortion by 5c.
Conclusion. A novel class of QACs, called cationic lipo-oxazoles, was tested and found to exhibit anti-fungal activity against planktonic cells as well as biofilms of Candida.
-