Arboviruses and their Vectors

Curated by Journal of General Virology Editor Dr Eng Eong Ooi (Duke NUS Medical School) and Advisory Board Member Dr Esther Schnettler (Bernhard Nocht Institute for Tropical Medicine), this collection presents the latest advances in arbovirus research. This collection was launched in conjuction with IMAV 2017 and in line with IMAV 2019 welcomes submissions of original research articles, Insight Reviews and full-length Reviews.
Find out more about how to submit to the collection here.
Collection Contents
-
-
Confirmation of Zika virus infection through hospital-based sentinel surveillance of acute febrile illness in Uganda, 2014–2017
Zika virus (ZIKV), transmitted by Aedes species mosquitoes, was first isolated in Uganda in 1947. From February 2014 to October 2017, the Uganda Virus Research Institute, in collaboration with the US Centers for Diseases Control and Prevention, conducted arbovirus surveillance in acute febrile illness (AFI) patients at St Francis hospital in Nkonkonjeru. Three hundred and eighty-four serum samples were collected and tested for IgM antibodies to yellow fever virus (YFV), West Nile virus (WNV), dengue virus (DENV), chikungunya virus (CHIKV) and ZIKV. Of the 384 samples, 5 were positive for ZIKV IgM. Of these five, three were confirmed by plaque reduction neutralization test (PRNT) to be ZIKV infections. Of the remaining two, one was determined to be a non-specific flavivirus infection and one was confirmed to be alphavirus-positive by reverse transcriptase polymerase chain reaction (RT-PCR). This study provides the first evidence of laboratory-confirmed ZIKV infection in Uganda in five decades, and emphasizes the need to enhance sentinel surveillance.
-
-
-
Chikungunya virus fusion properties elucidated by single-particle and bulk approaches
More LessChikungunya virus (CHIKV) is a rapidly spreading, enveloped alphavirus causing fever, rash and debilitating polyarthritis. No specific treatment or vaccines are available to treat or prevent infection. For the rational design of vaccines and antiviral drugs, it is imperative to understand the molecular mechanisms involved in CHIKV infection. A critical step in the life cycle of CHIKV is fusion of the viral membrane with a host cell membrane. Here, we elucidate this process using ensemble-averaging liposome–virus fusion studies, in which the fusion behaviour of a large virus population is measured, and a newly developed microscopy-based single-particle assay, in which the fusion kinetics of an individual particle can be visualised. The combination of these approaches allowed us to obtain detailed insight into the kinetics, lipid dependency and pH dependency of hemifusion. We found that CHIKV fusion is strictly dependent on low pH, with a threshold of pH 6.2 and optimal fusion efficiency below pH 5.6. At this pH, CHIKV fuses rapidly with target membranes, with typically half of the fusion occurring within 2 s after acidification. Cholesterol and sphingomyelin in the target membrane were found to strongly enhance the fusion process. By analysing our single-particle data using kinetic models, we were able to deduce that the number of rate-limiting steps occurring before hemifusion equals about three. To explain these data, we propose a mechanistic model in which multiple E1 fusion trimers are involved in initiating the fusion process.
-
-
-
Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus
Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection.
-
-
-
Chikungunya virus non-structural protein 2-mediated host shut-off disables the unfolded protein response
The unfolded protein response (UPR) is a cellular defence mechanism against high concentrations of misfolded protein in the endoplasmic reticulum (ER). In the presence of misfolded proteins, ER-transmembrane proteins PERK and IRE1α become activated. PERK phosphorylates eIF2α leading to a general inhibition of cellular translation, whilst the expression of transcription factor ATF4 is upregulated. Active IRE1α splices out an intron from XBP1 mRNA, to produce a potent transcription factor. Activation of the UPR increases the production of several proteins involved in protein folding, degradation and apoptosis. Here, we demonstrated that transient expression of chikungunya virus (CHIKV) (family Togaviridae, genus Alphavirus) envelope glycoproteins induced the UPR and that CHIKV infection resulted in the phosphorylation of eIF2α and partial splicing of XBP1 mRNA. However, infection with CHIKV did not increase the expression of ATF4 and known UPR target genes (GRP78/BiP, GRP94 and CHOP). Moreover, nuclear XBP1 was not observed during CHIKV infection. Even upon stimulation with tunicamycin, the UPR was efficiently inhibited in CHIKV-infected cells. Individual expression of CHIKV non-structural proteins (nsPs) revealed that nsP2 alone was sufficient to inhibit the UPR. Mutations that rendered nsP2 unable to cause host-cell shut-off prevented nsP2-mediated inhibition of the UPR. This indicates that initial UPR induction takes place in the ER but that expression of functional UPR transcription factors and target genes is efficiently inhibited by CHIKV nsP2.
-